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Abstract Mumford-Shah and Potts functionals are power-
ful variational models for regularization which are widely
used in signal and image processing; typical applications
are edge-preserving denoising and segmentation. Being both
non-smooth and non-convex, they are computationally chal-
lenging even for scalar data. For manifold-valued data, the
problem becomes even more involved since typical features
of vector spaces are not available. In this paper, we pro-
pose algorithms for Mumford-Shah and for Potts regular-
ization of manifold-valued signals and images. For the uni-
variate problems, we derive solvers based on dynamic pro-
gramming combined with (convex) optimization techniques
for manifold-valued data. For the class of Cartan-Hadamard
manifolds (which includes the data space in diffusion tensor
imaging), we show that our algorithms compute global mini-
mizers for any starting point. For the multivariate Mumford-
Shah and Potts problems (for image regularization) we pro-
pose a splitting into suitable subproblems which we can solve
exactly using the techniques developed for the correspond-
ing univariate problems. Our method does not require any
a priori restrictions on the edge set and we do not have to
discretize the data space. We apply our method to diffusion
tensor imaging (DTI) as well as Q-ball imaging. Using the
DTI model, we obtain a segmentation of the corpus callo-
sum on real data.
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1 Introduction

In their seminal works [60, 61] Mumford and Shah intro-
duced a powerful variational approach for image regulariza-
tion. It consists of the minimization of an energy functional
given by

min
u,C

γ|C| +
α

q

∫
Ω\C
|Du(x)|qdx +

1
p

∫
Ω

d(u(x), f (x))pdx. (1)

Here, f represents the data and u is the target variable to op-
timize for. In the scalar case, u and f are real-valued func-
tions on a domain Ω ⊂ R2, d is the Euclidean metric, and
Du denotes the gradient (in the weak sense). In contrast to
Tikhonov-type priors, the Mumford-Shah prior penalizes the
variation only on the complement of a discontinuity set C.
Furthermore, the “length” |C| (i.e., the outer one-dimensional
Hausdorff measure) of this discontinuity set is penalized.
The parameters γ > 0 and α > 0 control the balance be-
tween the penalties. Basically, the resulting regularization
is a smooth approximation to the image f which, at the
same time, allows for sharp variations (“edges”) at the dis-
continuity set. The piecewise constant variant of (1) – of-
ten called Potts functional – corresponds to the degenerate
case α = ∞ which amounts to removing the second term in
(1) and considering piecewise constant functions with suf-
ficiently smooth jump sets (in the sense of Hausdorff mea-
sures). The typical application of these functionals is edge-
preserving smoothing. As such, they can serve as an initial
step of a segmentation pipeline for instance. In simple cases,
the induced edge set can directly yield a reasonable segmen-
tation. For further information considering these problems
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from various perspectives (calculus of variation, stochas-
tics, inverse problems) we exemplarily refer the reader to
[5, 18, 20, 22, 37, 38, 41, 47, 67, 91] and the references
therein. These references also deal with central basic ques-
tions such as, e.g., the existence of minimizers.

Mumford-Shah and Potts problems are computationally
challenging since one has to deal with non-smooth and non-
convex functionals. Even for scalar data, both problems are
NP-hard in dimensions higher than one [4, 19, 81]. This
makes finding a (global) minimizer infeasible. However, due
to its importance in image processing, many approximative
strategies have been proposed for scalar- and vector valued
data. Among these are graduated non-convexity [18], ap-
proximation by elliptic functionals [5], graph cuts [19], ac-
tive contours [77], convex relaxations [66], iterative thresh-
olding approaches [38], and alternating direction methods of
multipliers [46].

In recent years, regularization of manifold-valued data
has gained a lot of interest. For example, sphere-valued data
have been considered for SAR imaging [59], regularization
of orientation data [75] and non-flat models for color image
processing [24, 53, 56, 82]. Further examples are S O(3) data
expressing vehicle headings, aircraft orientations or cam-
era positions [68], and motion group-valued data [71]. Re-
lated work dealing with the processing of manifold-valued
data are wavelet-type multiscale transforms [44, 68, 86] and
manifold-valued partial differential equations [25, 43, 78];
statistics on Riemannian manifolds are the topic of [16, 17,
33–35, 62, 64]. Total variation regularization for manifold-
valued data is the topic of [58] and [87]; related higher order
functionals are considered in [14].

In medical imaging, a prominent example with manifold-
valued data is diffusion tensor imaging (DTI). DTI allows to
quantify the diffusional characteristics of a specimen non-
invasively [11, 48]; see also the overview in [8]. DTI is help-
ful in the context of neurodegenerative pathologies such as
schizophrenia [36, 55], autism [2] or Huntington’s disease
[70]. In DTI, the data can be viewed as living in the Rie-
mannian manifold of positive (definite) matrices; see, e.g.,
[65]. The underlying distance corresponds to the Fisher-Rao
metric [69] which is statistically motivated since the positive
matrices (called diffusion tensors) represent covariance ma-
trices. These tensors model the diffusivity of water molecules.
Oriented diffusivity along fiber structures is reflected by the
anisotropy of the corresponding tensors; typically, there is
one large eigenvalue and the corresponding eigenvector yields
the orientation of the fiber. In DTI, potential problems arise
in areas where two or more fiber bundles are crossing be-
cause the tensors are not designed for the representation of
multiple directions. In order to overcome this, the Q-ball
imaging (QBI) approach [29, 45, 79] uses higher angular
information to allow for multiple directional peaks at each
voxel; it has been applied to diffusion tractography [13]. The

Q-ball imaging data can be modeled by a probability density
on the 3D-unit sphere called orientation distribution func-
tion (ODF). The corresponding space of ODFs can be en-
dowed with a Riemannian manifold structure [42].

In the context of DTI, Wang and Vemuri consider a Chan-
Vese model for manifold-valued data (which is a variant
of the Potts model for the case of two labels) and a piece-
wise smooth analogue [84, 85]. Their method is based on a
level-set active-contour approach which iteratively evolves
the jump set followed by an update of the mean values (or a
smoothing step for the piecewise smooth analogue) on each
of the two labels. In order to reduce the computational load
in their algorithms (caused by Riemannian mean computa-
tions for a very large amount of points) the authors resort to
non-Riemannian distance measures in [84, 85]. Recently, a
fast recursive strategy for computing the Riemannian mean
has been proposed and applied to the piecewise constant
Chan-Vese model in [27]. Related methods are K-means
clustering [89], geometric flows [49] or level set methods
[30, 92].

1.1 Contribution

In this work, we propose algorithms for Mumford-Shah and
Potts regularization for Riemannian manifolds (which in-
cludes DTI with the Fisher-Rao metric) for both signals and
images. For manifold-valued data, the distance d in (1) be-
comes the Riemannian distance and the differential D can be
understood in the sense of metric differentials [54]. For uni-
variate Mumford-Shah and Potts problems, we derive solvers
based on a combination of dynamic programming techniques
developed in [22, 40, 61, 90] and proximal point splitting
algorithms for manifold-valued data developed by the au-
thors in [87]. Our algorithms are applicable for manifolds
whose Riemannian exponential mapping and its inverse can
be evaluated in reasonable time. For Cartan-Hadamard man-
ifolds (which includes the manifold in DTI) our algorithms
compute global minimizers for all input data. (We note that
the univariate problems are not NP hard.) These results actu-
ally generalize to the more general class of Hadamard spaces.
For Mumford-Shah and Potts problems for manifold-valued
images (where the problems become NP-hard), we propose
a novel splitting approach. Starting from a finite difference
discretization of (1) we use a penalty method to split the
problems into computationally tractable subproblems. These
subproblems are closely related to univariate Mumford-Shah
and Potts problems and can also be solved using the meth-
ods we developed for these problems in this paper. We note
that our methods neither require a priori knowledge on the
number of labels nor a discretization of the manifold.

We show the capabilities of our methods by applying
them to two medical imaging modalities: DTI and Q-ball
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imaging. For DTI, we first consider several synthetic exam-
ples corrupted by Rician noise and show our algorithms po-
tential for edge-preserving denoising. In simple cases, the
edge set produced by our method can directly serve as a seg-
mentation. We illustrate this for the corpus callosum of real
human brain data. We conclude with experiments for Q-ball
imaging.

1.2 Organization of the article

Section 2 deals with algorithms for the univariate Potts and
Mumford-Shah problems for manifold-valued data. We start
by presenting a dynamic programming approach for the uni-
variate Potts and Mumford-Shah problem in Section 2.1.
Then we use this approach to derive an algorithm for uni-
variate Potts functionals for manifold-valued data in Sec-
tion 2.2 and to derive an algorithm for the univariate Mum-
ford-Shah problem in Section 2.3. An analysis of the de-
rived algorithms is given in Section 2.4. In Section 3, we de-
rive algorithms for the Potts and Mumford-Shah problems
for manifold-valued images. We first deal with proper dis-
cretizations and then propose a suitable splitting into sub-
problems that we solve using similar techniques as in the
univariate case. We apply our algorithm to DTI data in Sec-
tion 4 and to Q-ball data in Section 5. The proofs are pro-
vided in Section 6.

2 Univariate Mumford-Shah and Potts functionals for
manifold-valued data

In this section, we present solvers for Mumford-Shah and
Potts problems for univariate manifold-valued data. These
are not only important in their own right; variants of the de-
rived solvers are also used as a basic building block for the
proposed algorithm for the multivariate problems.

We first deal with some general issues; then, we de-
rive the announced algorithms – first for the univariate Potts
problem and then for the univariate Mumford-Shah prob-
lem; we conclude with an analysis of both algorithms.

In the univariate case, the discretization of the Mum-
ford-Shah functional (1) and the Potts functional (α = ∞ in
(1)) is straightforward. The (equidistantly sampled) discrete
Mumford-Shah functional reads

Bα,γ(x) =
1
p

n∑
i=1

d(xi, fi)p +
α

q

∑
i<J(x)

d(xi, xi+1)q + γ|J(x)|,

(2)

where d is the distance with respect to the Riemannian met-
ric in the manifold M, f ∈ Mn is the data, and J is the
jump set of x. The jump set is given by J(x) = {i : 1 ≤
i < n and d(xi, xi+1) > s} where the jump height s is related

to the parameter γ via γ = αsq/q. Using a truncated power
function we may rewrite (2) in the Blake-Zisserman type
form

Bα,s(x) =
1
p

n∑
i=1

d(xi, fi)p +
α

q

n−1∑
i=1

min(sq, d(xi, xi+1)q), (3)

where s is the argument the power function t 7→ tq is trun-
cated at.

The discrete univariate Potts functional for manifold-
valued data reads

Pγ(x) =
1
p

n∑
i=1

d(xi, fi)p + γ|J(x)|, (4)

where d is the distance in the manifold and i belongs to the
jump set of x if xi , xi+1.

We first of all show that the problems (2) and (4) have a
minimizer. (We recall that certain variants of the continuous
Mumford-Shah and Potts functional do not have a minimizer
without additional assumptions; see, e.g., [37].)

Theorem 1 In a complete Riemannian manifold the discrete
Mumford-Shah functional (2) and the discrete Potts func-
tional (4) have a minimizer.

The proof is given in Section 6.1. We note that the data
spaces in applications are typically complete Riemannian
manifolds.

2.1 The basic dynamic program for univariate
Mumford-Shah and Potts problems

In order to find a minimizer of the Mumford-Shah problem
(2) and the Potts problem (4), we use a general dynamic
programming principle which was considered for the corre-
sponding scalar and vectorial problems in various contexts;
see, e.g., [22, 40, 61, 73, 88, 90]. We briefly recall the basic
idea starting with the Mumford-Shah problem. It is conve-
nient to use the notation

xl:r = (xl, ..., xr).

Assume that we have already computed minimizers xl of
the functional Bα,γ associated with the partial data f1:l =

( f1, ..., fl) for each l = 1, ..., r − 1 and some r ≤ n. Then
we compute xr associated to data f1:r as follows. With each
xl−1 of length l − 1, we associate a candidate of the form
xl,r = (xl−1, hl,r) ∈ Mr which is the concatenation of xl−1

with a vector hl,r of length r − l + 1. This vector hl,r is a
minimizer of the problem

εl,r = min
h∈Mr−l+1

r−1∑
i=l

α

p
dq(hi, hi+1) +

1
p

r∑
i=l

dp(hi, fi), (5)
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and εl,r is the error of a best approximation on the (discrete)
interval (l, ..., r). Then we calculate the quantity

min
l=1,...,r

{Bα,γ(xl−1) + γ + εl,r}, (6)

which we will see to coincide with the minimal functional
value of Bα,γ for data f1:r (cf. Theorem 2 and Theorem 3).
Then, we set xr = xl∗,r, where l∗ is a minimizing argument
in (6). We successively compute xr for each r = 1, ..., n un-
til we end up with full data f . Actually, only the l∗ and the
εl,r and not the vectors xr have to be computed in this selec-
tion process; in a postprocessing step, the solution can be re-
constructed from this information; see Algorithm 1 and [40]
for further details. With these improvements, the dynamic
programming skeleton (without the cost for computing the
approximation errors εl,r) has quadratic cost with respect to
time and linear cost with respect to space. In practice, the
computation can be accelerated significantly by pruning the
search space [52, 72].

In order to adapt the dynamic program for the Potts prob-
lem (4) the only modification required is that the approxima-
tion errors on the intervals εl,r read

εl,r = min
h∈M

1
p

r∑
i=l

dp(h, fi), (7)

and the candidates are of the form xl,r = (xl−1, hl,r), where
hl,r ∈ Mr−l+1 is constant and componentwise equals a mini-
mizer h∗ of (7) on the interval l, . . . , r. We next deal with the
computation of these minimizers.

2.2 An algorithm for univariate Potts functionals for
manifold-valued data

In order to make the dynamic program from Section (2.1)
work for the Potts problem for manifold-valued data, we see
from Section (2.1) that we have to compute the approxima-
tion errors εl,r given in (7) in the Riemannian manifold M.
This means we are faced with the problem of computing a
minimizer for the manifold-valued data fl:r = ( fl, . . . , fr) and
then to calculate the corresponding approximation error.

We first consider the case p = 2 which amounts to the
“mean-variance” situation. Since our data live in a Rieman-
nian manifold, the usual vector space operations to define
the arithmetic mean are not available. However, it is well
known (cf. [34, 50, 51, 65]) that a minimizer

z∗ ∈ arg min
z∈M

N∑
i=1

d(z, zi)2 (8)

is the appropriate definition of a mean z∗ ∈ mean(z1, . . . , zN)
of the N elements zi on the manifold M. A mean is in gen-
eral not uniquely defined since the minimization problem
has no unique solution in general. If the zi are contained

in a sufficiently small ball, however, the solution is unique.
We then replace the “∈” symbol by an “=” symbol and call
z∗ the mean. The actual size of the ball where minimizers
are unique depends on the sectional curvature of the man-
ifold M; for details and for further information we refer to
[50, 51].

In contrast to the Euclidean case there is no closed form
expression of the intrinsic mean defined by (8) in Rieman-
nian manifolds. A widespread method for computing the in-
trinsic mean is the gradient descent approach (already men-
tioned in [50]) given by

z(k+1) = expz(k)

N∑
i=1

1
N exp−1

z(k) zi. (9)

(Recall that the points z1, . . . , zN are the points for which the
intrinsic mean is computed.) Information on convergence re-
lated and other issues can, e.g., be found in the papers [1, 34]
and the references therin. Newton’s method was also applied
to this problem in the literature; see, e.g., [31]. It is reported
in the literature and also confirmed by the authors’ experi-
ence that the gradient descent converges rather fast; in most
cases, 5-10 iterations are enough. This might explain why
this relatively simple method is widely used.

For general p , 1, the gradient descent approach works
as well. The case p = 1 amounts to considering the in-
trinsic median and the intrinsic absolute deviation. In this
case, the gradient descent (9) is replaced by a subgradient
descent which in the differentiable part amounts to rescal-
ing the tangent vector given on the right-hand side of (9)
to length 1 and considering variable step sizes which are
square-integrable but not integrable; see, e.g., [6].

A speedup using the structure of the dynamic program
is obtained by initializing with previous output. More pre-
cisely, when starting the iteration of the mean for data fl+1:r,

we can use the already computed mean for the data fl:r as an
initial guess. We notice that this guess typically becomes
even better the more data items we have to compute the
mean for, i.e., the bigger r − l is. This is important since this
case is the computational more expensive part and a good
initial guess reduces the number of iterations needed.

A possible way to reduce the computation time further
is to approximate the mean by a certain iterated two-point
averaging construction (known as geodesic analogues in the
subdivision context) as explained in [83]. Alternatively, one
could use a “log− exp” construction (also known from sub-
division; see [68]) which amounts to stopping the iteration
(9) after one step.

The proposed algorithm for univariate Potts functionals
for manifold-valued data is summarized in Algorithm 1.
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(a)

(b)

(c)

Fig. 1: (a) Synthetic piecewise constant signal; (b) noisy data (Rician
noise with κ = 85); (c) Potts regularization (p, q = 1) using Algo-
rithm 1 with parameter γ = 84.5. The signal is reconstructed almost
perfectly; the exact jump locations are obtained.

2.3 An algorithm for univariate Mumford-Shah functionals
for manifold-valued data

In order to make the dynamic program from Section 2.1
work for the Mumford-Shah problem with manifold-valued
data, we have to compute the approximation errors εl,r in (5).
To this end, we compute minimizers of the problem

Vα(x; f ) =
1
p

∑
i

dp(xi, fi) + α
1
q

∑
i

dq(xi, xi+1). (10)

Here x is the target variable and f is the data. These are Lp-
Vq type problems: the data term is a manifold `p distance
and the second term is a qth variation; in particular, q = 1
corresponds to manifold-valued total variation. Solvers for
these problems have been developed in the authors’ paper
[87]. We briefly recall the approach concentrating on the
univariate case; for details we refer to [87]. We decompose
the functional (10) into the sum Vα = F + α

∑
i Gi, where

we let Gi(x) = 1
q dq(xi, xi+1) and F(x) = 1

p
∑

i dp(xi, fi). For
each of these summands, we can explicitly compute their
proximal mappings defined by

proxλGi
x = arg min

y

(
λGi(y) +

1
2

d2(x, y)
)
. (11)

They are given in terms of points on certain geodesics. In
detail, we get

(proxλGi
x)i = [xi, xi+1]t,

(proxλGi
x)i+1 = [xi+1, xi]t.

(12)

where [x, y]t denotes the point reached after time t on the
unit speed geodesic which is starting in x and going to y.
For the practically relevant cases q = 1, 2 the parameter t
has an explicit representation: for q = 1, we have t = λ,

if λ < 1
2 d(xi, xi+1), and d(xi, xi+1)/2 else; for q = 2 we get

Algorithm 1: Algorithm for the Mumford-Shah prob-
lem (2) and the Potts problem (4) for univariate
manifold-valued data

begin
// Find optimal partition
B0 ← −γ;
for r ← 1, ..., n do

for l← 1, ..., r do
// Mumford-Shah case (Sec. 2.3):
ε ← minh∈Mr−l+1 Vα(h; fl:r) // use Alg. of Sec. 2.3
// Potts case (Sec. 2.2):
ε ← minh∈M

∑r
i=l dp(h, fi) // use Alg. of Sec. 2.2

b← Bl−1 + γ + ε;
if b < Br then

Br ← b;
pr ← l − 1;

end
end

end
// Reconstruct solution from partition
r ← n; l← pr;
while l > 0 do
// Mumford-Shah case (Sec. 2.3):
h∗ ← arg minh∈Mr−l+1 Vα(h; fl+1:r) // use Alg. of Sec. 2.3
// Potts case (Sec. 2.2):
h′ ← arg minh∈M

∑r
i=l+1 dp(h, fi) // use Alg. of Sec. 2.2

h∗ ← (h′, . . . , h′);
x∗l+1:r ← h∗;
r ← l; l← pr;

end
return x∗

end

t = λ
1+2λd(xi, xi+1). Similarly, the proximal mapping of F is

given by

(proxλF)i(x) = [xi, fi]s. (13)

For p = 1, we have s = λ if λ < d(xi, fi), and d(xi, fi) else;
for p = 2, we obtain that s = λ

1+λ
d(xi, fi). We notice that

the above proximal operators are uniquely defined if there
is precisely one shortest geodesic joining the two points in-
volved. Otherwise, one has to resort to set-valued mappings.
Uniqueness is given for the class of Cartan-Hadamard man-
ifolds which includes the data space in DTI considered in
Section 4.

Equipped with these proximal mappings we apply a cyc-
lic proximal point algorithm for manifold-valued data [9]:
we apply the proximal mappings of F, αGr, . . . , αGl (with
parameter λ) and iterate this procedure. During the iteration,
we decrease the parameter λk in the kth iteration in a way
such that

∑
k λk = ∞ and

∑
k λ

2
k < ∞.

A speedup using the structure of the dynamic program
is obtained by initializing with previous output as explained
for the Potts problem in Section 2.2. The proposed algo-
rithm for univariate Mumford-Shah functionals with mani-
fold-valued data is summarized in Algorithm 1.
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(a)

(b)

(c)

Fig. 2: (a) Synthetic piecewise smooth signal; (b) noisy data (Rician
noise with κ = 70); (c) Mumford-Shah regularization (p, q = 1) us-
ing Algorithm 1 with parameters α = 1.45 and γ = 1.5. The noise is
removed while preserving the jump.

2.4 Analysis of the univariate Potts and Mumford-Shah
algorithms

We first obtain that our algorithms yield global minimizers
for data in the class of Cartan-Hadamard manifolds which
includes many symmetric spaces. Prominent examples are
the spaces of positive matrices (which are the data space in
diffusion tensor imaging) and the hyperbolic spaces. These
are complete simply-connected Riemannian manifolds of non-
positive sectional curvature. For details we refer to [21] or
to [10]. In particular, in these manifolds, geodesics always
exist and are unique shortest paths.

Theorem 2 In a Cartan-Hadamard manifold, Algorithm 1
produces a global minimizer for the univariate Mumford-
Shah problem (2) (and the discrete Potts problem (4), ac-
cordingly).

The proof is given in Section 6.2.
We notice that this result generalizes to the more gen-

eral class of (locally compact) Hadamard spaces. These are
certain metric spaces generalizing the concept of Cartan-
Hadamard manifolds; see, e.g., [76]. Examples of Hadamard
spaces which are not Cartan-Hadamard manifolds are the
metric trees in [76]. The validity of Theorem 2 for (locally
compact) Hadamard spaces may be seen by inspecting the
proof noticing that all steps rely only on features of these
spaces.

For analysis of general complete Riemannian manifolds,
we first notice that, in this case we have to deal with ques-
tions of well-definedness. We consider the Potts functional
and data f1, . . . , fn. For each (discrete) subinterval [l, r], a
corresponding mean hl,r is defined as a minimizer of (8)
for data fl, . . . , fr. Although such a minimizer exists by the
coercivity and continuity of the functional, it might not be
unique. Furthermore, an algorithm such as gradient descent

only computes a local minimizer for general input data. For
data not too far apart, however, the gradient descent pro-
duces a global minimizer of (8) (since then the correspond-
ing functional is convex). If data are so far apart that the op-
erations in the manifold are not even well-defined it might be
likely that they do not belong to the same segment. Hence,
let us consider a constant CK such that, if points belong to
a CK-ball with center in the compact set K, then their mean
is uniquely defined and obtained by converging gradient de-
scent. Assuming that the data lie in K, we call a partition of
[1, n] admissible if for any interval [l, r] in this partition the
corresponding data fl:r are centered in a common CK-ball.
We get the following result.

Theorem 3 Let M be a complete Riemannian manifold. Then
the univariate Potts problem given in Algorithm 1 with p = 2
produces a minimizer of the discrete Potts problem (4) when
restricting the search space to candidates whose jump sets
correspond to admissible partitions.

The proof can be found in Section 6.2. This result can be
easily generalized to the general case p ≥ 1.

3 Mumford-Shah and Potts problems for
manifold-valued images

We now consider Mumford-Shah and Potts regularization
for manifold-valued images. In contrast to the univariate case,
finding global minimizers is not tractable anymore in gen-
eral. In fact, the Mumford-Shah problem and the Potts prob-
lem are known to be NP hard in dimensions higher than one
even for scalar data [4, 81]. Therefore, the goal is to derive
approximative strategies that perform well in practice.

In the following it is convenient to use the notation dp(x, y)
for the p-distance of two manifold-valued images x, y ∈
Mm×n, i.e.

dp(x, y) =
∑
i, j

dp(xi j, yi j).

We further define the penalty function

Ψa(x) =
∑
i, j

ψ(x(i, j)+a, xi j)

with respect to some finite difference vector a ∈ Z2 \ {0}.
Here, we instantiate the potential function ψ in the Mumford-
Shah case by

ψ(w, z) =
1
q

min(sq, d(w, z)q). (14)

and in the Potts case by

ψ(w, z) =

1, if w , z,

0, if w = z,
(15)
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for w, z ∈ M.
In higher dimensions, the discretization of the Mumford-

Shah and Potts problem is not as straightforward as in the
univariate case. A simple finite difference discretization with
respect to the coordinate directions is known to produce un-
desired block artifacts in the reconstruction [23]. The results
improve significantly when including further finite differ-
ences such as the diagonal directions [23, 72, 74]. We here
use a discretization of the general form

min
x∈Mm×n

1
p

dp(x, f ) + α

R∑
s=1

ωsΨas (x), (16)

where the finite difference vectors as ∈ Z
2 \ {0} belong to

a neighborhood system N . The values ω1, ..., ωR are non-
negative weights. We focus on the neighborhood system

N = {(1, 0); (0, 1); (1, 1); (1,−1)}

with the weights ω1 = ω2 =
√

2 − 1 and ω3 = ω4 = 1 −
√

2
2

as in [72]. For further neighborhood systems and weights we
refer to [23, 72]. We next show the existence of minimizers
of the discrete functional (16).

Theorem 4 Let M be a complete Riemannian manifold. Then
the discrete Mumford-Shah and Potts problems (16) both
have a minimizer.

The proof is given in Section 6.1.
We next propose a splitting approach for the discrete

Mumford-Shah and Potts problems. To this end, we rewrite
(16) as the constrained problem

min
x1,...,xR

R∑
s=1

1
pR

dp(xs, f ) + αωsΨas (xs)

subject to xs = xs+1 for all 1 ≤ s ≤ R.

(17)

Here, we use the convention xR+1 = x1. (Note that x1, ..., xR

are m × n images.) We use a penalty method (see e.g. [15])
to include the constraints into the target functional and get
the problem

min
x1,...,xR

R∑
s=1

ωs pRαΨas (xs) + dp(xs, f ) + µkdp(xs, xs+1).

We use an increasing coupling sequence (µk)k which fulfills
the summability condition

∑
k µ
−1/p
k < ∞. Optimization with

respect to all variables simultaneously is still not tractable,
but our specific splitting allows us to minimize the func-
tional blockwise, that is, with respect variables x1, ..., xR sep-
arately. Performing the blockwise minimization we get the

algorithm

xk+1
1 ∈ arg min

x
pRω1αΨa1 (x) + dp(x, f )

+ µkdp(x, xk
R),

xk+1
2 ∈ arg min

x
pRω2αΨa2 (x) + dp(x, f )

+ µkdp(x, xk+1
1 ),

...

xk+1
R ∈ arg min

x
pRωRαΨaR (x) + dp(x, f )

+ µkdp(x, xk+1
R−1).

(18)

We notice that each line of (18) decomposes into univariate
subproblems of Mumford-Shah and Potts type, respectively.
For example, we obtain

(x1):, j ∈ arg min
z∈Mn

pRω1αΨ (z) + dp(z, f:, j)

+ µkdp(z, (xk
R):, j) (19)

for the direction a1 = (1, 0).
The subproblems are almost identical with the univari-

ate problems of Section 2. Therefore, we can use the al-
gorithms developed in Section 2 with the following minor
modification. For the Potts problem, the approximation er-
rors are now instantiated by

εl,r = min
h∈M

r∑
i=l

dp(h, fi j) + µkdp(h, (xk
R)i j),

for the subproblems with respect to direction a1 (and analo-
gously for the other directions a2, ..., aR.) This quantity can
be computed by the gradient descent explained in Section 2.2.
In the Mumford-Shah case, we have

εl,r = min
h∈Mr−l+1

r−1∑
i=l

pRω1αdq(hi, hi+1)

+

r∑
i=l

dp(hi, fi j) +

m∑
i=l

µkdp(hi, (xk
R)i j).

The only difference to (5) is the extra “data term”

F′(h) =

r∑
i=l

dp(hi, (xk
R)i j).

Its proximal mapping has the same form as the proximal
mapping of F in Section 2.3. Thus, we only need to comple-
ment the cyclic proximal point algorithm for the Lp-Vq prob-
lem of Section 2.3 by an evaluation of the proximal mapping
with respect to F′.

We eventually show convergence.

Theorem 5 For Cartan-Hadamard manifold-valued images
the algorithm (18) for both the Mumford-Shah and the Potts
problem converge.

The proof is given in Section 6.3.
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(a) (b)

(c) (d)

(e) (f)

Fig. 3: (a) Synthetic DT image; (b) noisy data (Rician noise of level
75); (c) local means (∆SNR : 6.8); (d) local medians (∆SNR : 7.8); (e)
L1-TV reconstruction (using TV parameter α = 0.3, ∆SNR : 8.0); (f)
Potts reconstruction (p = 1) with parameter γ = 10 (∆SNR : 9.1). Lo-
cal means and medians smooth out the edges. The L1-TV reconstruc-
tion decreases the contrast. The Potts method yields an almost perfect
reconstruction.

4 Edge preserving regularization of diffusion tensor
images

The first application of our method is edge preserving de-
noising of diffusion tensor images. Diffusion tensor imaging
(DTI) is a non-invasive modality for medical imaging quan-
tifying diffusional characteristics of a specimen. It is based
on nuclear magnetic resonance [11, 48]. Prominent applica-
tions are the determination of fiber tract orientations [11],
the detection of brain ischemia [57], and studies on autism
[2], to mention only a few. Regularization of DT images is
important in its own right and, in particular, serves as a pro-

cessing step in many applications. It has been studied in a
number of papers; we exemplarily mention [12, 26, 65, 85].

In DTI, the diffusivity of water molecules is encoded
into a so-called diffusion tensor. This means that the data
sitting in each pixel (or voxel) of a diffusion tensor image
is a positive (definite symmetric) 3 × 3 matrix D. The space
of positive matrices Pos3 is a Riemannian manifold when
equipped with the Riemannian metric

gD(W,V) = trace(D−
1
2 WD−1VD−

1
2 ); (20)

for details, see, e.g., [65]. Here the symmetric matrices W,V
represent tangent vectors in the point D. Besides its math-
ematical properties, the practical advantage of the Rieman-
nian metric (20) in comparison to the Euclidean metric is
that it reduces the swelling effect ([7, 78]). On the flipside,
the algorithms and the corresponding theory become more
involved.

4.1 Implementation of our algorithms for DTI

We now implement our algorithms for Mumford-Shah and
Potts regularization for DTI data. Due to the generality of
our algorithms, we only need an implementation of the Rie-
mannian exponential mapping and its inverse to make them
work on the concrete manifold. For the space of positive ma-
trices, the Riemannian exponential mapping expD is given
by

expD(W) = D
1
2 exp(D−

1
2 WD−

1
2 )D

1
2 .

Here D is a positive matrix and the symmetric matrix W rep-
resents a tangent vector in D. The mapping exp is the ma-
trix exponential. The inverse of the Riemannian exponential
mapping is given by

exp−1
D (E) = D

1
2 log(D−

1
2 ED−

1
2 )D

1
2 .

for positive matrices D, E. The matrix logarithm log is well-
defined since the argument is a positive matrix. The matrix
exponential and logarithm can be efficiently computed by
diagonalizing the symmetric matrix under consideration and
then applying the scalar exponential and logarithm functions
to the eigenvalues. The distance between D and E is just the
length of the tangent vector exp−1

D (E) which can be explicitly
calculated by d(D, E) = (

∑3
l=1 log(κl)2)

1
2 , where κl is the lth

eigenvalue of the matrix D−
1
2 ED−

1
2 .

The space of positive matrices becomes a Cartan-Hada-
mard manifold with the above Riemannian metric (20). Hen-
ce the theory developed in this paper fully applies; in partic-
ular, the univariate algorithms for DTI data produce global
minimizers for all input data (see Theorem 2); furthermore,
the algorithm (18) converges, and all its subproblems are
solved exactly.
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(a) (b)

(c) (d)

(e) (f)

Fig. 4: (a) Synthetic DT image; (b) noisy data (Rician noise of level
65); (c) local means (∆SNR : 2.2); (d) local medians (∆SNR : 3.6);
(e) L1-TV reconstruction (TV parameter α = 0.4, ∆SNR : 4.1), (f)
Mumford-Shah regularization (p, q = 1) using parameters γ = 9.4 and
α = 17.8 (∆SNR : 5.4). Local means and medians tend to smooth out
the edges. TV preserves the edges but it decreases the contrast. The
proposed method preserves the edges and the contrast.

4.2 Synthetic data

The data measured in DTI are so-called diffusion weighted
images (DWIs) Dv which capture the directional diffusivity
in the direction v. The relation between the diffusion tensor
image f and the DWIs Dv at some pixel p is given by the
Stejskal-Tanner equation

Dv(p) = A0e−b vT S (p)v, (21)

where b > 0 is an empirical parameter; here A0 denotes the
unweighted measurement at the pixel p. Note that in prac-
tice the measurement of A0 might be affect by noise which
in turn has significant influence on Dv. For our synthetic
experiments, we simply used b = 800 and A0 = 1000.

The tensor S (p) is commonly derived from the DWIs via
a least square fit using (21). In our experiments we visualize
the diffusion tensors by the isosurfaces of the correspond-
ing quadratic forms. More precisely, the ellipse representing
the diffusion tensor S (p) at pixel p are the points x fulfilling
(x − p)T S (p)(x − p) = c, for some c > 0.

We simulate noisy data using a Rician noise model [12,
32]. This means that we generate a noisy DWI D′v(p) by

D′v(p) =

√
(X + Dv(p))2 + Y2,

with clean data Dv(p) and Gaussian variables X,Y ∼ N(0, σ2).
In our examples, we impose Rician noise to 15 diffusion
weighted images and then compute the diffusion tensors ac-
cording to the Stejskal-Tanner equation (21) using a least
squares fit. We notice that a least squares fit might yield
quantities that are not in Pos3. To circumvent resulting prob-
lems we could use one of the various methods that ensure
positive definiteness; see, e.g., [12, 32]. However, an ap-
pealing feature of our method is that such missing tensors
can be incorporated into the method by just removing the
invalid items from the data term, i.e., considering the data
term dp(x, f ) =

∑
(i, j)∈J dp(xi j, fi j) with summing only over

those indices (i, j) where fi j is a valid tensor, i.e, J = {(i, j) :
fi j is positive definite}.

We compare our results with Lp-Vq regularization, i.e.,
with minimizers of the two-dimensional analogue of (10)
using the (globally convergent) cyclic proximal point algo-
rithm of [87]. We further show the results of local means and
local medians over a 3 × 3 neighborhood. In order to quan-
tify the performance of our methods, we use the manifold-
valued version of the signal-to-noise ratio improvement given
by

∆SNR = 10 log10

∑i j d(gi j, fi j)2∑
i j d(gi j, xi j)2

 ,
see [87]. Here f is the noisy data, g the ground truth, and x
the regularized restoration. In the synthetic experiments, we
have tuned the model parameters with respect to the ∆SNR.
For the real data, due to the lack of a ground truth, we ad-
justed the parameter such that we obtained a visually rea-
sonable tradeoff between smoothing and preservation of the
edges.

The univariate situation is illustrated in Fig. 1 for Potts
and in Fig. 2 for Mumford-Shah regularization. Fig. 3 shows
the effect of Potts regularization on a simple diffusion ten-
sor image. The noise is removed and the segment bound-
aries are correctly recovered. The original DT images in
Fig. 4 and Fig. 5 exhibit sharp transitions/edges between ar-
eas where the tensors are smoothly varying. For such im-
ages, it is thus appropriate to use our (piecewise smooth)
Mumford-Shah regularization method. As result, we obtain
a piecewise smooth denoised image with preserved sharp
edges.
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(a) (b)

(c) (d)

(e) (f)

Fig. 5: (a) Synthetic DT image with a crossing; (b) noisy data (Ri-
cian noise of level 45), (c) Local means (∆SNR : 1.1); (d) Lo-
cal medians (∆SNR : 2.2); (e) L1-TV reconstruction (TV parameter
α = 0.5, ∆SNR : 2.8); (f) Proposed Mumford-Shah reconstruction
(p = 2, q = 1) using parameters γ = 0.8 and α = 5 (∆SNR : 3.2). Sim-
ilar to Figure 4, the Mumford-Shah method shows the best denoising
performance w.r.t. ∆SNR and it preserves the edges.

4.3 Real data

Next we apply the proposed method to real DTI data. The
present data set was taken from the Camino project [28].
Fig. 6 (a) shows a slice of a human brain. Comparing with
local means, local medians and TV regularization, we il-
lustrate the edge preserving denoising capabilities of our
method in Fig. 6. One application of DTI is to study the
corpus callosum which connects the right and the left hemi-
sphere of the human brain. A first step in the analysis is often
the determination of its boundaries [2, 85]. As mentioned in
the introduction, edge preserving smoothing is a frequently
used basic step in image segmentation methods. In simple
cases, the edge set obtained by the Mumford-Shah model

can yield a segmentation directly. In Fig. 7, we observe that
our Mumford-Shah approach removes noise and preserves
sharp boundaries between the oriented structures. In partic-
ular, the edge set gives an outline of the boundaries of the
corpus callosum.

5 Edge-preserving regularization of Q-ball images

In DTI the diffusion at each pixel/voxel is modeled via a
single tensor. Typically, this tensor has one dominant eigen-
value with corresponding eigenvector pointing to the direc-
tion with maximal diffusivity. This direction is directly re-
lated with pathways of, e.g., neural fibers. DTI encounters
difficulties for modeling voxels with intravoxel directional
heterogeneity which, for example, occur at crossings of fiber
bundles [3, 80]. In order to overcome these limitations, sev-
eral approaches have been proposed [3, 29, 39, 63]. One of
the most popular among these approaches is Q-ball imaging
[80]. Here the tensor (seen as an ellipsoid parametrized over
a ball) is replaced by a more general orientation distribution
function (ODF) ϕ : S2 → R where ϕ(s) essentially cor-
responds to the diffusivity in direction s. Since the method
allows for more flexibility, high angular resolution diffusion
imaging (HARDI) data (see [79, 80]) are needed. Further
information can be found in the latter references.

5.1 The Q-ball manifold and the implementation of our
algorithm for Q-ball imaging

In order to derive a Riemannian structure on the Q-ball man-
ifold we follow the approach of [42]. The points in the (dis-
crete) Q-ball manifold are “square-root parametrized” (dis-
crete) ODFs which are a kind of samples of continuous ODFs
ϕ : S2 → R on a finite subset S of the sphere S2 with
a preferably almost equidistant sampling. To be precise, a
discrete ODF is a positive function ϕ : S → R such that∑

s∈S ϕ
2(s) = 1 (as proposed in [42]). Hence, a discrete ODF

can be identified with a point on the sphere Sn−1. Then the
set Φ of all discrete ODFs is the intersection of the positive
quadrant with the unit sphere inRn, and thus can be endowed
with the Riemannian structure inherited from Sn−1. Then the
corresponding metric for the Q-ball manifold is given by

d(ϕ1, ϕ2) = arccos

∑
s∈S

ϕ1(s)ϕ2(s)

 , for ϕ1, ϕ2 ∈ Φ.

The basic Riemannian operations have simple closed ex-
pressions. For a point ϕ on the unit sphere Sn−1 in Rn and
a non-zero tangent vector v to the sphere at ϕ, the exponen-
tial mapping is given by

expϕ(v) = ϕ · cos ‖v‖ +
v · sin ‖v‖
‖v‖

,
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(a) (b) (c)

(d) (e)

Fig. 6: Mumford-Shah method for edge-preserving regularization of real data from the Camino dataset [28] (from axial slice no. 28; cf. also the
brain atlas available at http://www.dartmouth.edu/~rswenson/Atlas/). For comparison, the results of local means filtering, local median
filtering and TV regularization are shown. (a) Real DTI data; (b) local means; (c) local medians (both 3 × 3 mask); (d) L2-TV (α = 0.14); (e)
Mumford-Shah regularization (p = 2, q = 2) using parameters α = 0.6 and γ = 0.2. Local means filtering smoothes the whole image including
the edges; local median filtering yields better edge preservation; L2-TV regularization preserves the edges even better but introduces additional
small jumps within areas of smooth transition (“staircasing”). The proposed Mumford-Shah regularization smoothes the image while preserving
the edges.

where ‖ · ‖ denotes the Euclidean norm in Rn. The inverse
of the exponential mapping is defined for any pair of points
ϕ1, ϕ2 ∈ Φ by

exp−1
ϕ1

(ϕ2) = d(ϕ1, ϕ2) ·
ϕ2 − 〈ϕ1, ϕ2〉ϕ1

‖ϕ2 − 〈ϕ1, ϕ2〉ϕ1‖
.

These explicit formulas for the Riemannian exp mapping
and its inverse enable us to directly apply our algorithms
for the regularization of Q-ball data.

5.2 Numerical experiments

We apply our algorithm to synthetic Q-ball data. Our exam-
ples simulate situations where two fiber bundles intersect.
In the examples the size of the sampling set on the 2-sphere
is n = 181 directions. In order to simulate noisy data, we

use the method based on the so-called “soft equator approx-
imation” [79]. We visualize a discrete ODF as a spherical
polar plot. We compare our results with local means, with
local medians (both using a 3 × 3 neighborhood), and with
classical L2-Sobolev regularization (L2-V2) using the cyclic
proximal point algorithm of [87].

Our first example is a univariate signal (Fig. 8). It con-
tains two kinds of Q-balls: one “tensor-like” with a single
peak and another one with two peaks. This illustrative ex-
ample shows that, also in the Q-ball case, our regularization
method removes the noise while preserving the jump and its
location.

Our second experiment is a Q-ball valued image which
simulates the crossing of two fiber bundles (Fig. 9). Here, we
observe that our method removes the noise while preserving
the fiber crossing and the directional structures encoded in
the Q-balls as well as the edge structure in the image.

http://www.dartmouth.edu/~rswenson/Atlas/


12 Andreas Weinmann et al.

(a) (b)

Fig. 7: (a) Corpus callosum of a human brain from the Camino project [28]. (b) Mumford-Shah regularization (p, q = 1) using parameters α = 4.3
and γ = 2.9. The noise is reduced significantly while the edges are preserved. In this particular case, the edge set (red lines) of the reconstruction
even yields a segmentation of the corpus callosum and its adjacent structures.

(a)

(b)

(c)

(d)

Fig. 8: (a) Synthetic piecewise smooth Q-ball signal, (b) noisy data,
(c) the manifold analogue of classical Sobolev regularization (L2-V2

with α = 50), (d) Mumford-Shah regularization (p, q = 2) with pa-
rameters α = 25, γ = 0.5. Classical Sobolev regularization removes
the noise, but it smoothes out the jump; in contrast, the Mumford-Shah
regularization removes the noise and preserves the jumps.

6 Proofs

In this section, we provide the proofs of the assertions made
in this paper.

6.1 Existence of minimizers

We supply the proofs of Theorem 4 and Theorem 1 which
are statements on the existence of minimizers.

Proof (Proof of Theorem 4) We first show that the Mumford-
Shah version of the discretization (16) has a minimizer. In

the Mumford-Shah case, ψ is the truncated power function
given by (14). Since ψ is continuous, so is Ψas for all s and
therefore the whole functional given by (16) is continuous.
On the other hand, the data term dp(x, f ) is obviously coer-
cive with respect to the Riemannian distance. This makes the
overall functional coercive and confines points with small
functional value to a bounded set. Since the manifold un-
der consideration is complete, points with small functional
value are confined to a compact set. Hence, the continuous
functional takes its minimal value on this compact set and
the corresponding point is a minimizer.

We come to the discrete Potts functional. Here we con-
sider the discretization (16) where ψ is implemented by (15).
With the same argument as for the Mumford-Shah func-
tional above, the Potts functional is coercive with respect
to the Riemannian distance. We show its lower semiconti-
nuity. We have a look at Ψas which can be written as a sum
of univariate jump functionals for manifold-valued data of
the form S : u 7→ |J(u)| from the Riemannian manifold M j

to the nonnegative integers (where j is the varying length
of the data under consideration.) If these functionals S were
not lower semicontinuous, there would be a convergent se-
quence un → u with each un ∈ M j such that |J(u)| > |J(un)|
for sufficiently high indices n. Since un → u component-
wise (with respect to the distance induced by the Rieman-
nian metric), we get, using the triangle inequality, that

d(un
k ; un

k−1)→ d(uk; uk−1).

This contradicts u having more jumps than un. Hence, the
functionals S and, as a consequence, the functionals Ψas are
lower semicontinuous. Using the continuity of the data term
the discretization (16) of the Potts functional is lower semi-
continuous. By its coercivity and the completeness of the
manifold M, arguments with a small Potts value are located
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(a) (b) (c)

(d) (e) (f)

Fig. 9: (a) Synthetic Q-Ball image; (b) noisy data; (c) local means (∆SNR : 4.0); (d) local medians (∆SNR : 5.6); (e) the manifold analogue
of classical Sobolev regularization (L2-V2 with parameter α = 1, ∆SNR : 2.5); (f) Mumford-Shah regularization (p, q = 2) with parameters
α = 3, γ = 0.4 (∆SNR : 6.9). Local means, local medians and Sobolev regularization smooth out the edges and the crossing structures. The
Mumford-Shah method recovers the edges as well as the crossings of the original image reliably.



14 Andreas Weinmann et al.

in a compact set. Hence, in the Potts case, (16) has a mini-
mizer. This completes the proof. ut

Proof (Proof of Theorem 1) The assertion is a consequence
of Theorem 4 when specifying to data defined on {1, . . . , n}×
{1} choosing as single direction a1 = (1, 0). ut

6.2 Univariate Mumford-Shah and Potts algorithms

We supply the proof of Theorem 2 which states that the algo-
rithms proposed for the univariate problems produce global
minimizers when the data live in a Cartan-Hadamard mani-
fold.

Proof (Proof of Theorem 2) We start with the Mumford-
Shah problem for manifold-valued data. For l = 1, . . . , r, we
consider the first l−1 data items f1:l−1 = ( f1, . . . , fl−1). We let
xl−1 be a minimizer of the corresponding functional Bl−1

α,γ for
the truncated data f1:l−1. Moreover, we let hl,r ∈ Mr−l+1 be
the result computed by our algorithm for the minimization
of Vα according to Section 2.3 for data fl:r. Since we are in a
Cartan-Hadamard manifold, hl,r is a global minimizer of Vα

by Theorem 2 in [87]. With each l we associate the candidate
xl,r = (xl−1, hl,r). On the other hand we consider an index l∗

minimizing (6). We claim that the candidate xl∗,r is a mini-
mizer of Br

α,γ. To see this, consider an arbitrary x ∈ Mr and
let k be its rightmost jump point k. If there is no such k, then
x has no jumps and

Br
α,γ(x) = Vα(x) ≥ Vα(x1,r) ≥ Br

α,γ(xl∗,r).

The penultimate inequality is due to the fact that x1,r is a
global minimizer of Vα in a Cartan-Hadamard manifold. The
last inequality follows from (6). If k is the rightmost jump
point of x, we have

Br
α,γ(x) = Bk−1

α,γ (x) + γ + Vα(xl,r) ≥ Br
α,γ(xl∗,r)

by (6). This shows the assertion of the theorem in the Mumford-
Shah case using induction on r.

In the Potts functional case, we let xl−1 be a minimizer of
the Potts functionals Pl−1

γ for the truncated data f1:l−1. Then
we let hl,r ∈ Mr−l+1 be the result of the gradient (resp. sub-
gradient) descent (9). Since we are in a Cartan-Hadamard
manifold, hl,r agrees with the constant function on [l, r] which
is pointwise equal to the mean (p = 2),median (p = 1) or, in
general, the minimizer of the right hand side of (7). Now we
may proceed analogous to the Mumford-Shah case to con-
clude the assertion and complete the proof. ut

We proceed showing Theorem 3 which states that our al-
gorithm yields a minimizer for the Potts problem when con-
sidering general complete Riemannian manifolds and candi-
dates with admissible partitions.

Proof (Proof of Theorem 3) We use the notation of the proof
of Theorem 2. Then, the xl−1 are minimizer of the corre-
sponding Potts functionals Pl−1

γ for the truncated data f1:l−1.
(We notice that such a minimizer exists, since an interval
consisting of one member is always admissible.) Further-
more, for admissible intervals [l, r], hl,r ∈ Mr−l+1 is point-
wise equal to the computed Riemannian mean as explained
in Section 2.2. The Riemannian mean minimizes the right
hand side of (7). The candidates xl,r = (xl−1, hl,r) and the
minimizing index l∗ are given as in the proof of Theorem 2
above. In order to show that xl∗,r is a minimizer, we consider
an arbitrary x ∈ Mr with an admissible partition. If x has
no jump, then Pγ(x) = 1

2
∑

i d(x, fi)2 ≥ Pγ(x1,r) ≥ Pγ(xl∗,r).
Otherwise, let k be the rightmost jump point of x (which, by
assumption, comes with an admissible partition). Then, we
get

Pr
γ(x) = Pk−1

γ (x) + γ + Vα(xl,r) ≥ Pr
γ(xl∗,r).

which shows that xl∗,r is a minimizer. Now induction com-
pletes the proof. ut

6.3 Mumford-Shah and Potts algorithms for images

We supply the proof of Theorem 5 stating that the algorithm
in (18) converges in a Cartan-Hadamard manifold.

Proof (Proof of Theorem 5) We show that all iterates xk
s con-

verge to the same limit for all s ∈ {1, . . . ,R}. Since we are in
a Cartan-Hadamard manifold, xk+1

1 is a global minimizer of
the functional

H1(x) = pRω1αΨa1 (x) + dp(x, f ) + µkdp(x, xk
R)

which is the first problem in (18). This follows by an argu-
ment similar to the proof of Theorem 2.

We have H1(xk+1
1 ) ≤ H1(xk

R) which means that

dp(xk+1
1 , f ) + µkdp(xk+1

1 , xk
R) ≤ pRω1αΨa1 (xk

R) + dp(xk
R, f ).

(22)

In analogy, we get for the xk+1
s , s = 2, . . . ,R, using the other

functionals in (18) that

dp(xk+1
s , f ) + µkdp(xk+1

s , xk
s−1) ≤ pRω1αΨas (xk+1

s−1) + dp(xk+1
s−1, f ).
(23)

For both the Mumford-Shah and the Potts problem, the terms
αΨa1 (xk

R) and αΨas (xk+1
s−1), with s = 2, . . . ,R, are uniformly

bounded by a constant C which does not depend on k and
s. This is because, for any input, αΨas is bounded by αmn
with the regularizing parameter α for the jump term of the
functional under consideration, and m and n are the height
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and width of the image. Hence we can use (22) and (23) to
get

dp(xk+1
1 , xk

R) ≤ C
µk

+ 1
µk

(dp(xk
R, f ) − dp(xk+1

1 , f )),

dp(xk+1
s , xk

s−1) ≤ C
µk

+ 1
µk

(dp(xk+1
s−1, f ) − dp(xk+1

s , f )). (24)

Now we may apply the inverse triangle inequality to the sec-
ond summand on the right-hand side and get dp(xk

R, f ) −
dp(xk+1

1 , f ) ≤ dp(xk
R, x

k+1
1 ). Then, a simple manipulation shows

that

dp(xk+1
1 , xk

R) ≤ C
µk−1 , dp(xk+1

s , xk
s−1) ≤ C

µk−1 . (25)

As a consequence, there is a constant D and an index k0 such
that, for all k ≥ k0,

d(xk+1
R , xk

R) ≤ Dµ
−

1
p

k .

Hence,

d(xk+1
R , xk0

R ) ≤ D
k+1∑

l=k0+1

µ
−

1
p

l < ∞,

and so the sequence xk+1
R converges. By (24), the iterates xk

s
converge to the same limit for all s = 1, . . . ,R − 1. This
completes the proof. ut

7 Conclusion and Future Research

In this paper, we proposed new algorithms for the non-smooth
and non-convex Mumford-Shah and Potts functionals for
manifold-valued signals and images. Our approach imposes
no restrictions on the number of labels and it needs no a pri-
ori discretization of the manifold. We have shown the poten-
tial of our method for edge preserving regularization in DTI
and in Q-ball imaging. In simple cases, the derived edge set
can directly yield a segmentation which we have illustrated
on a real data example. For signals with values in Cartan-
Hadamard manifolds (which includes the data space in dif-
fusion tensor imaging), we have seen that our algorithms for
univariate data produce global minimizers for any starting
point. For the Mumford-Shah and Potts problems for image
regularization (which is a NP hard problem) we have ob-
tained convergence of the proposed splitting approach.

Topics of future research are the application of our algo-
rithms to further nonlinear data spaces relevant for imaging.
Another issue is to build a segmentation pipeline based on
our method. Finally, from a theoretical side, it is interest-
ing to further investigate convergence related questions for
general Riemannian manifolds.
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