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Abstract

We establish results on convergence and smoothness of subdivision rules operating on manifold-

valued data which are based on a general dilation matrix. In particular we cover irregular

combinatorics. For the regular grid case results are not restricted to isotropic dilation matrices.

The nature of the results is that intrinsic subdivision rules which operate on geometric data

inherit smoothness properties of their linear counterparts.
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1. Introduction

The theory of subdivision schemes, with its relations to computer graphics, geometric design,

and approximation theory, has grown into a huge body of research. It is mostly concerned with

the properties of linear subdivision schemes. There are, however, manifold-valued data which are

not directly accessible by linear subdivision rules. In recent years it turned out that geometric

subdivision, which deals with this kind of geometric data, can be systematically analyzed with

regard to convergence, smoothness, and other properties. This line of research was originally

proposed by D. Donoho [4, 22]. Wallner and Dyn [24], using the so-called method of proximity,

viewed geometric (and necessarily nonlinear) subdivision rules as perturbations of linear ones.

They show convergence and C1 smoothness in the univariate case. Taking this point of view,

higher order smoothness results were obtained by subsequent papers such as [23, 26, 6, 27].

Multivariate results, also including irregular combinatorics, are as yet only known for schemes

based on dilation matrices which are multiples of the identity [5, 25].

In this paper we are interested in subdivision rules with general dilation operating on geo-

metric data, which includes irregular combinatorics and, in the regular grid case, non-isotropic

Preprint submitted to Elsevier June 22, 2010



dilation matrices. Previous work on linear schemes is, for instance, [11, 12, 9] and [16, 15] for

regular and irregular combinatorics, respectively. The data we are interested in are points in

surfaces and Riemannian manifolds, Lie groups, and symmetric spaces. Examples include posi-

tions of a rigid body in space which occur in flight recorder data, or positive definite symmetric

matrices which occur in diffusion-tensor imaging. Subdivision rules which in the linear case are

mostly defined in terms of averages are modified so as to operate on this kind of data.

This article is organized as follows: Section 2 treats the regular grid case. We establish

the setup and formulate our results. In Section 3 we do the same for meshes with irregular

combinatorics. All proofs are collected in Section 4.

2. Setup and results for the regular grid case

This section treats subdivision on regular grids based on general dilation matrices. In Sec-

tion 2.1 we collect the necessary information from linear subdivision, whereas Section 2.2 presents

subdivision rules processing geometric data. Section 2.3 contains our results on convergence and

smoothness of nonlinear rules for general dilation matrices. Their proofs are given in Section 4.1.

2.1. Linear theory

A linear subdivision scheme is classically given by its mask a, which is a finitely supported

sequence a : Zd → R and an integer dilation matrix M ∈ Zd×d which means that limn→∞M−n =

0. Its action on vector-valued data p : Zd → V is defined by

Sp(α) = Sa,Mp(α) =
∑

β∈Zd
a(α−Mβ)p(β). (2.1)

We require that the mask is normalized by
∑
a(α) = |detM |. It is well known that uniform

convergence for arbitrary bounded data depends only on convergence for input data δ0 : Zd → R

which is 1 at 0 and vanishes elsewhere, and that the limit function φ associated with this delta

sequence is a refinable function which satisfies

φ(x) =
∑

α∈Zd
a(α)φ(Mx− α).

All limit functions have the smoothness of the refinable function φ, since for input p the corre-

sponding limit function can be written as

p ∗ φ =
∑
α∈Zd p(α)φ(· − α). (2.2)
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Smoothness of limits is usually associated with the spectral quantity

ρk(a,M) = max
µ∈Nd0 , |µ|=k

(
lim
n→∞

(‖∇µSnδ0‖∞)1/n
)
. (2.3)

This quantity is used to define the smoothness index of a scheme later on. It measures the

contraction rate of the k-th order differences of the data produced by the subdivision scheme for

input δ0. The backward difference operator ∇µ for a multi-index µ = (µ1, . . . , µd) which is used

here operates on data p as follows:

∇(µ1,...µd)p = (∇e1)µ1 ◦ · · · ◦ (∇ed)µdp with (∇xp)(y) = p(y)− p(y − x).

Here e1, . . . , ed are the canonical basis vectors in Rd, and we use the notation |µ| = µ1 + · · ·+µd.

For the analysis of (2.3) it is required that the scheme satisfies sum rules. We say that Sa,M

satisfies sum rules of order k, if for every polynomial q with deg(q) < k we have∑
β∈Zd

a(α+Mβ)q(α+Mβ) =
∑
β∈Zd

a(Mβ)q(β), for all α ∈ Zd.

There are the following results concerning the smoothness of limits [9].

Theorem 2.1. Assume the subdivision scheme Sa,M has maximal sum rule order k and that the

eigenvalues of M are ordered by magnitude of modulus:

spec(M) = {λmin, . . . , λmax}.

We define the smoothness index of the scheme by

ν(a,M) = − log ρk(a,M)

log |λmax|
. (2.4)

Then the scheme converges if and only if ν(a,M) > 0, and the critical Hölder index of the limit

functions is at least ν(a,M). Further, for l = 1, . . . , k − 1, we have the equality

ρl(a,M) = max(ρk(a,M), |λmin|−l). (2.5)

The smoothness of the limit functions is measured by their membership in the spaces of the

Hölder-Zygmund scale Lipγ : We define the critical Hölder index of a function f by

ν(f) = sup{γ : f ∈ Lipγ}.

Our terminology regarding Hölder-Zygmund functions is as follows: For γ > 0 and an integer

k > γ we consider the seminorm

|f |Lip γ,k = inf{c > 0 | ∀h ∈ Rd with ‖h‖ < h0 : ‖(∇h)kf‖∞ < c‖h‖γ},
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where h0 is a positive number. The Hölder-Zygmund space Lipγ consists of all bounded con-

tinuous functions where the norm ‖f‖Lipγ ,k = ‖f‖∞ + |f |Lipγ ,k is finite. It is well known that

these spaces do not depend on the choice of k and h0, and that the corresponding norms are

equivalent. For more information on Hölder-Zygmund spaces we refer to [21], where they are

considered as special instances of Besov spaces and are denoted by Bγ∞,∞.

There is an important special case which implies equality of the smoothness index of the

scheme ν(a,M) and the Hölder index ν(φ) of the refinable function; this is when M is isotropic

and Sa,M is stable. M is isotropic if M is C-diagonalizable and all eigenvalues are equal in

modulus. Sa,M is called stable if the mapping p→ p ∗ φ is lower bounded.

2.2. Geometric subdivision rules

Geometric subdivision acts on data which lie in surfaces, Riemannian manifolds, matrix

groups, and the like. They can be defined whenever a substitute for affine averaging which linear

rules are based on is available in the respective geometry. This can be either done by employing

substitutes for the basic arithmetic operations used in the definition of linear subdivision rules

or by using a definition which transfers properties of an affine average to the geometric setting.

In order to explain this, we consider the weighted average x =
∑
ajxj of points xj with weights

aj summing up to 1. In Euclidean space the following definitions of x are equivalent:

x = y ⊕
∑

aj(xj 	 y), for arbitrary y, (2.6)

x = argminy
∑

aj dist(xj , y)2, (2.7)

x solves
∑

aj(xj 	 x) = 0. (2.8)

Here the symbols ⊕ and 	 stand for the ordinary + and − operations in a vector space. In any

space where modified versions of the ⊕ and 	 operators are available we may use (2.6) or (2.8) to

define an analogue of the linear construction. Note, however, that the choice of the ‘base point’

y in (2.6) in general influences the result.

In a matrix group (or in a general Lie group) we may define

p⊕ v = p exp(v), q 	 p = log(p−1q),

using the matrix exponential (or Lie group exponential) [1]. It is known that constructions (2.6)

and (2.8) are well defined for input data which are close enough. In general, these constructions

are not well defined globally since q	p is not well defined. This is because the matrix exponential
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is one-to-one and onto only for arguments in some neighborhood of zero. The precise conditions

depend on the group under consideration.

In a surface or Riemannian manifold we employ the exponential mapping expp(v) which

computes the endpoint of a geodesic line emanating from the point p in direction v and whose

length equals ‖v‖ [2]:

p⊕ v = expp(v), q 	 p = exp−1
p (q).

It is known that in this case construction (2.6) is well-defined for close enough input data and

base point y nearby. Due to the availability of a metric in a Riemannian manifold additionally

(2.7) can be employed. This definition transfers the minimizing property of an affine average

to the Riemannian case. In fact, definitions (2.8) and (2.7) (the Riemannian center of mass)

are well-defined and do actually coincide for input data which are close enough. The precise

meaning of ‘close enough’ depends on the sectional curvatures of the manifold in question [13].

With these preparations, we define the log-exp analogue of a subdivision rule Sa,M in a surface

or Riemannian manifold by

(Tp)(α) = q(α)⊕
( ∑
β∈Zd

a(α−Mβ)(p(β)	 q(α))
)
, (2.9)

where q(α) is a base point which lies close to those data items p(β) which contribute to the

resulting data item (Tp)(α). Secondly, we define the intrinsic mean analogue by

(T ′p)(α) = arg min
q

∑
β∈Zd

a(α−Mβ) dist(p(β), q)2. (2.10)

Note that if we choose q(α) = (T ′p)(α) as a base point in (2.9), then we get T = T ′. This can

be easily seen from the fact that the constructions (2.7) and (2.8) are equivalent in surfaces and

Riemannian manifolds. The fact that T = T ′ for this special choice of base points is important

in the analysis since it allows us to treat the intrinsic mean analogue as a special case of the

log-exp analogue.

The log-exp analogue was proposed by D. Donoho et al. [4, 22]. Numerical experiments by

G. Xie and T. P.-Y. Yu [26] show that log-exp subdivision rules based on the original choice

of base-point enjoy the same smoothness as the linear rule they are derived from only up to

C2. In the same paper they suggest a way of choosing the base point to achieve higher order

smoothness:

(Tp)(α) = (Qp)(α)⊕
( ∑
β∈Zd

a(α−Mβ)(p(β)	 (Qp)(α))
)
, (2.11)
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where Q is an auxiliary interpolatory subdivision scheme analogous to a linear scheme with

sufficiently high polynomial reproduction. The choice of base points is also the topic of [7].

Last but not least, there is a somewhat different kind of analogue, the so-called projection

analogue, which works whenever the manifold N the data live in is embedded into an ambient

vector space. Examples are embedded surfaces in Euclidean space, or matrix groups. The output

of a linear subdivision scheme S applied to data in the submanifold N is projected back to N .

The corresponding geometric scheme has the form

T = P ◦ S. (2.12)

The proper notion of a projection mapping P is the following: If the input data p, with values in

N , are dense enough, then Sp does not lie too far from N. So it is sufficient that P is defined in

an ε-neighborhood U of N. It is required that P is a sufficiently smooth mapping with P ◦P = P

and P (U) ⊂ N. Examples are closest point projections or gradient flows [6].

2.3. Results for the regular grid case

In this part we transfer properties of linear schemes to nonlinear schemes, using the method

of proximity. The proofs are given in Section 4.1. Results of this type have been obtained

by [24, 23, 26] in the univariate case, and by [5] in the multivariate case for standard dilation

matrices which are a multiple of the identity matrix. Our method of proof is not via derived

schemes as in the above mentioned references. This has to do with the problems derived schemes

exhibit in case of general dilation (as already observed by [20]).

The fact that subdivision is well-defined only for dense enough data entails considerable

technicalities in the proofs. The exact formulation of the proximity between a nonlinear scheme

and the linear scheme it is derived from is similarly technical. We introduce the following notions:

For a subset N of Euclidean space and a positive real number σ, we consider the class PN,σ of

σ-dense data which lie in N :

PN,σ =
{
p ∈ l∞(Zd, N)

∣∣∣ ‖∇eip‖∞ ≤ σ for all canonical basis vectors ei

}
.

Typically N is a surface in Euclidean space or some open set in Euclidean space obtained as

image of a chart. Further, we consider the quantity

Ωj(p) =
∑
γ∈Γj

j∏
i=1

sup
|µ|=i

(‖∇µp‖∞)γi , where Γj = {γ ∈ Nj0 | γ1 + 2γ2 + · · ·+ jγj = j + 1}.

(2.13)
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For illustration, consider the cases j = 1 and j = 2:

Ω1(p) = sup
|µ|=1

‖∇µp‖2, Ω2(p) = sup
|µ|=1

‖∇µp‖3 + sup
|µ|=1

‖∇µp‖ sup
|µ|=2

‖∇µp‖.

Using this notation, we define proximity between subdivision rules S, T which operate on data

living in a Euclidean vector space.

Definition 2.2. Subdivision rules S and T obey proximity inequalities of order k in the domain

PN,σ if there is a constant C > 0 such that, for all p ∈ PN,σ,

sup
|µ|=j−1

‖∇µ(Sp− Tp)‖∞ ≤ CΩj(p) for j = 1, . . . , k. (2.14)

This definition has already been successfully employed in [24, 23, 5, 26]. It turns out that

also in our setting, allowing dilation matrices to be arbitrary, we can use it to obtain convergence

and smoothness of T. The result below concerning convergence of T is rather technical because

we must specify the domains our data lie in, and we have to guarantee that T is defined for all

intermediate subdivided data.

Definition 2.3. A subdivision scheme T is called convergent for input data p if Tnp is well-

defined for all n, and if there is a uniformly continuous function fp such that

‖fp(M−i·)− T ip‖l∞(Zd) → 0 as i→∞.

Here fp is sampled on M−iZd and a sequence on Zd is generated from this sample by the

change of coordinates α→M iα.

Theorem 2.4. Consider a convergent linear subdivision rule Sa,M which is in first order prox-

imity with the subdivision rule T w.r.t. the class of data PN,σ. We assume that, for all p ∈ PN,σ,

the subdivided data Tp takes its values in a set N ′ ⊃ N. Assume further that there is N ′′ ⊂ N

and σ′ > 0 such that the σ′-neighborhood Uσ′(N
′′) obeys Uσ′(N

′′) ∩ N ′ ⊂ N. Then the subdivi-

sion rule T converges for bounded data p in PN ′′,σ′′ , for some σ′′ > 0. Furthermore, using the

notation of Definition 2.3

Tnp ∗ φ(Mn·)→ fp as uniformly continuous functions.

Since we consider quite general sets N in this theorem, we have to assume the existence of

the set N ′′ with the above properties. However, if, for example, N is a ball of radius r, then

N ′′ can be chosen as the ball with the same center and radius r − σ′. Then, for this particular

choice of N , the theorem says that, if S and T fulfill proximity conditions w.r.t. PN,σ, then T

converges for dense enough input in the smaller ball N ′′.
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Theorem 2.5. Assume that the linear subdivision rule Sa,M has maximal sum rule order k and

that it is in k-th order proximity with a subdivision rule T w.r.t. to some domain PN,σ of σ-dense

data. If T converges for input data p, then the limit fp is a Lipγ function for all γ < ν(a,M).

The main reason for deriving these theorems is that they apply to the geometric subdivision

rules introduced above: When transferring geometric data into Rn by means of some coordinate

representation, we obtain nonlinear subdivision rules which operate in Rn. Knowing that these

resulting rules are in proximity to linear rules, we conclude:

Theorem 2.6. The previous theorems regarding convergence and smoothness apply to geometric

subdivision rules which are the log-exp analogue or the intrinsic mean analogue of the linear rule

Sa,M . In the log-exp case, the choice of base points must follow [7] (of which (2.11) is a special

case). Furthermore, they apply to the projection analogue, where for the smoothness result it is

required that the projection mapping is Ck+1.

Corollary 2.7. If the linear subdivision scheme Sa,M is stable and M is isotropic, the geometric

subdivision schemes mentioned in Theorem 2.6 produce limits fp whose smoothness index ν(fp)

is at least as high as the smoothness index ν(φ) of the refinable function φ of Sa,M . In particular,

if Sa,M produces Ck limits, then its geometric analogues also produce Ck limits.

Proofs of the above statements are given in Section 4.1.

3. Setup and results in case of irregular combinatorics.

This section extends the convergence and C1 smoothness results of the previous section to

nonlinear geometric subdivision on polyhedral meshes with possibly irregular combinatorics. In

Section 3.1 we briefly recall some basic notions of subdivision on polyhedral meshes. For more

information, we refer the reader to [3] and the references therein. Section 3.2 gives a precise def-

inition of parametric convergence near combinatorial singularities for polyhedral meshes, which

we need for the formulation of our results. In Section 3.3 we formulate assumptions on linear

schemes which allow us to deduce convergence and C1 smoothness for nonlinear schemes in prox-

imity to them. Section 3.4 explains how the geometric schemes of Section 2.2 are defined in the

setting of polyhedral meshes. Finally, in Section 3.5 we formulate our results. The respective

proofs are given in Section 4.2.
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Figure 1: Different ways of refining the combinatorics near an extraordinary vertex/face.

3.1. Subdivision schemes on irregular combinatorics

Here we set up subdivision on two-dimensional polyhedral meshes with possibly irregular

combinatorics. A mesh is defined by its combinatorics consisting of sets of vertices, edges and

faces and a positioning function h assigning each vertex its geometric position. A subdivision

scheme refines both the combinatorics and the geometric positions of the vertices. For linear

rules the refinement of the geometric positions is usually described by so-called stencils αv,w :

The position h1(w) = (Sh0)(w) of a vertex w of the refined combinatorics is given by

h1(w) =
∑
v

αv,wh0(v), where
∑
v

αv,w = 1, (3.15)

and h0(v) are positions of vertices in the initial combinatorics. It is assumed that αv,w 6= 0

for only finitely many v and that the corresponding v are combinatorially near to the vertex w.

Different types of combinatorial refinement are depicted in Figure 1.
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Figure 2: k-regular meshes for the

quad case (left) and the triangular

case (right).

It is a typical feature of subdivision with local rules that after a few rounds of subdivision, the

combinatorial singularities (extraordinary faces or vertices) become well isolated. It is therefore

no loss of generality to restrict analysis to the case of so-called k-regular meshes (Figure 2) whose

combinatorics posses a single face or vertex of valence k in the center, surrounded by a regular

mesh. This can be a quad mesh (or a triangular mesh) where regularity means faces and vertices

of valences 4 and 4, respectively (or 3 and 6, respectively).
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Figure 3: Rotation of the regular lattice about

±45◦ by
√

2-refinement. make

D0

D1

Figure 4: Splitting of

the domain D into

rings for refinement

based on the dilation

matrix 2I.

The linear subdivision rules considered in this section are, in the regular part of a mesh,

given by a subdivision operator of the form Sa,M with a finitely supported mask a and a dilation

matrix M . The information encoded in the mask yields the stencils for the regular parts of

the mesh, whereas near singularities modified averaging rules are employed. In this section on

irregular combinatorics we consider only classes of schemes based on isotropic dilation matrices

which are associated with a rotation of the regular quadrilateral lattice in the plane or the regular

triangular lattice in the plane, respectively.

For
√

2-schemes and
√

3-schemes the corresponding angle is ±45◦ (see Figure 3), in case of
√

7-schemes it is ± arctan(
√

3/5) which is not a rational multiple of π [15]. For a discussion

of different ways of refining the combinatorics, desired properties in application in geometric

modeling, and attempts toward a classification of subdivision schemes we refer to [3] and the

references therein. Another reference is [15].

3.2. Definition of convergence

Our objective is to derive convergence and smoothness results for nonlinear schemes acting

on meshes with irregular combinatorics. To that end we first define a parametric notion of

convergence near the singularity in a k-regular mesh. Consider Definition 2.3. There are two

notions in this parametric definition of convergence in the regular mesh case which are not a

priori determined near the singularity: The grid Z2 with its refinements M−nZ2, as well as the

domain of the limit function R2. We define substitutes for these two objects for k-regular meshes.

We start with the domain D where the limit function is defined in: We obtain D by cyclically

gluing k copies of a sector Ω in the plane with opening angle 90◦ in the quad case (or 60◦ in

triangular case), i.e.,

D = Ω × Zk,

where Zk are the integers modulo k. We refer to Figure 5 for a visualization. The gluing is done
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as follows: In each sector we have polar coordinates (x, φ) where 0 ≤ φ ≤ 90◦ (60◦). The points

(x, 90◦) of the first sector and the points (x, 0◦) of the second sector are identified, and so on,

where the points (x, 90◦) in the k-th sector and (x, 0◦) in the first sector are also identified. In

the triangular case, (x, 90◦) is replaced by (x, 60◦). In this way we obtain polar coordinates on D

where angles vary between 0◦ and k 90◦ (k 60◦ in the triangular case). For example, a point in D

with polar coordinates (x, 110◦) comes from the second sector and has angle 20◦ in that sector.

The domain D is an abstract space which turns into a metric space by defining the distance of

points by the length of the shortest path which connects them, with the metric in the single

sectors being that of R2.
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Figure 5: Primal
√

2-

subdivision for valence

k = 3 near a central

irregular vertex. Ver-

tex sets V0 (left) and

V1 = GV0 (right) act

as substitutes for Z2

and M−1Z2.

Next, we define the substitute for the grid Z2 and its refinements M−nZ2, where we consider

the primal case in detail. We start with the domain for the initial k-regular mesh. Let Σ be

the unit square [0, 1]× [0, 1] ⊂ Ω in the quadrilateral case (the equilateral triangle of length 1 in

the triangular case). In the quadrilateral case, there is a quadrangulation of the sector Ω such

that each quadrilateral is congruent to Σ. Gluing these sector-wise quadrangulations together

we obtain a quadrangulation of D whose vertices define the set V0 which serves as domain for

the initial k-regular mesh; see Figure 5 for a visualization. For the triangular case we proceed

analogously by starting with a triangulation of Ω where each triangle is congruent to Σ.

Next we define the domains V1, V2, . . . for the subdivided k-regular meshes which serve as a

substitute for the refined grids M−nZ2. To that end we introduce notions of dilation and rotation

on D : In polar coordinates, dilation by a factor λ > 0 is given by (x, φ) → (λx, φ); rotation

about an angle ψ is given by (x, φ)→ (x, φ+ψ). The dilation matrix M now induces a ‘similarity

transform’ G = Gm−1,ψ with dilation m−1 = |detM |−1 and rotation angle ψ which is the same
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as the rotation angle in the regular case. We define

Vi = GiV0.

The action of a subdivision scheme T on such k-regular input meshes is interpreted in the

following way: It transforms data h : Vn → Rd at level n to new data Tnh : Vn+1 → Rd. We

explicitly distinguish the operations on different levels since we find it more convenient for the

analysis of nonlinear schemes. We now can define convergence near a singularity:

Definition 3.1. A subdivision rule T converges on the bounded k-regular mesh p : V0 → Rd,

if iterated subdivision for input p is well-defined and if there is a uniformly continuous function

fp : D → Rd such that

‖f |Vi − Ti−1,0p‖∞ converges to 0, as i→∞.

Here Ti,l is short for

Ti,l = Ti ◦ . . . ◦ Tl for i ≥ l,

and Ti,l is the identity if i < l. Ti−1,0 maps data on subdivision level 0 to data on level i

performing i steps of subdivision. For the limit we use the notation T∞,0p := fp.

There is another interesting scheme we would like to incorporate into our framework, namely

J. Peters’ and U. Reif’s simplest subdivision scheme [17] (the mid-edge subdivision scheme of [8]).

This scheme is a dual
√

2-scheme, whose dilation matrices correspond to the similarity transforms

G = G1/
√

2,±π/4. Except for the choice of the discrete domain V0, the framework we presented
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Figure 6: Choice

of vertex sets V0

(left) and V1 = GV0

(right) for dual
√

2-

subdivision near an

irregular vertex of

valence k = 3.

for primal schemes can remain unchanged. Here is how to choose V0 and the refinements Vi such

that the class of dual
√

2-schemes also fits into our framework (see Figure 6):

V0 = (( 1
2 ,

1
2 ) + N0 × N0)× Zk, and Vi = GiV0.
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The above setup is in the spirit of the one introduced by Reif [19]. However, our setup

incorporates more general dilation matrices. Furthermore we have to include some discrete

components, namely the sets Vi, which cannot be found in [19] and which we need for the

analysis of nonlinear schemes.

3.3. Linear subdivision rules

The first step in the convergence and smoothness analysis is to split the neighborhood of the

singularity into so-called rings Di. The familiar splitting in the case of schemes based on dilation

matrix 2I is shown in Figure 4. In general this is done as follows (see Figure 7): We start with

D0 D1

D2

D0

D1

Figure 7: Domains of the limit func-

tions and auxiliary rings D0, D1,

D2, . . . Left: Quad-based
√

2 scheme.

Right: Triangle-based
√

3-scheme.

a certain neighborhood D′ = D′(r) of the singular point 0 of the domain D given by

D′ := rΣ× Zk,

where r denotes some scaling factor which is explained later on and which should not be confused

with the radial component of some polar coordinate. D′ is obtained as the union of all copies of

rΣ in all sectors. Using the similarity transform G of Section 3.2 we obtain rings Di = Di(r) for

i = 0, 1, . . . as follows:

Di = GiD′ \Gi+1D′.

The segments Dj
i = Dj

i (r) and the i-th inner area D′i = D′i(r) are defined by

Dj
i = Gi(Ω× j) ∩Di, D′i = GiD′. (3.16)

Before formulating the assumptions on the schemes we consider, we have to introduce the

notion of control sets. It is well known that due to the locality of the subdivision rule, the limit

function on a bounded set U ⊂ D only depends on data on some finite subset of Vi on each level

i. The smallest such subset is called the control set of U on level i and is denoted by ctrli(U).

13



We consider linear subdivision rules with smoothness index νa,M > 1 on regular meshes. By

choosing the factor r > 0 big enough we can achieve that the control sets ctrli(Dj
i (r)) are vertices

of a regular connectivity. Then we find, by perhaps enlarging r, a linear mapping (represented

by a square matrix A) which maps data on the control set of the 0-th inner area D′0(r), to data

on the control set of the first inner area D′1(r). This square matrix A is called the subdivision

matrix; it is the basis of convergence and smoothness analysis. This notion is not as general as

the corresponding one in the book [18] which is due to our discrete approach.

We impose the following conditions on the subdivision matrix A:

(i) The largest eigenvalue of A equals 1.

(ii) There is a unique pair of complex conjugate subdominant Jordan blocks or a unique pair

of real subdominant Jordan blocks with same multiplicity and same eigenvalues.

(iii) We choose one Jordan vector with the highest multiplicity and consider its real part v1

and imaginary part v2 (For real subdominant Jordan blocks, we let v1 and v2 be two

real Jordan vectors with the highest multiplicity.) With these real-valued input data we

construct the limit functions χ1 = S∞,0v1, χ2 = S∞,0v2. We assume that the mapping

χ = (χ1, χ2) : D → R2 (the characteristic map) is regular and injective on the punctured

set U \ {0}, where U is a neighborhood of 0.

In the monograph [18] the quite natural situation (ii) occurs in case of so-called shift invariant

algorithms. Schemes which fulfill all these requirements are the
√

3 and
√

7 schemes of Oswald

et al. [16, 15], which include the
√

3 scheme of [14], and the mid-edge subdivision scheme [17].

The following theorem of U. Reif is also valid in the case of our more general dilation matrices

as, for example, observed in the papers [16, 15].

Theorem 3.2. Let S be a linear subdivision scheme fulfilling the assumptions above. For input

data p on input level V0 consider the limit function fp. Then the map fp ◦ χ−1 is well-defined

and C1 in a neighborhood of 0. For almost all input data the image of fp is a two-dimensional

submanifold of Rd locally around the limit point fp(0).

3.4. Geometric subdivision rules

A geometric rule T analogous to a linear rule S can be obtained by firstly using the same

refinement procedure of the combinatorics for T as for S. For S, the calculation of new vertex

positions was based on (3.15) which is an affine averaging rule. Secondly, this averaging rule can

be modified as explained in Section 2.2 to obtain geometric rules which are intrinsically defined

in surfaces, Riemannian manifolds, Lie groups, etc.
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3.5. Results for meshes with irregular combinatorics

This section of results deals only with the case of k-regular meshes as described in Section 3.1.

This is in fact equivalent to the case of general combinatorics since combinatorial singularities

become well isolated after a few rounds of subdivision.

By suitable coordinate representations of the (dense enough) geometric data, each geometric

subdivision scheme can be viewed as a (nonlinear) scheme T acting on data with values in Rn. To

compare this scheme T with a linear scheme S we need the following local proximity inequality.

Definition 3.3. Combinatorially equivalent subdivision rules S and T fulfill a local (first order)

proximity inequality w.r.t. a set PN,σ of σ-dense data if there is a constant C > 0 such that for

all data p ∈ PN,σ

‖Sp(w)− Tp(w)‖ ≤ C sup{‖p(x)− p(y)‖ : x, y ∈ supp(α·,w)}2. (3.17)

Here supp(α·,w) = {v : αv,w 6= 0} is the support of the stencil αv,w which are those vertices v

which contribute to the calculation of Sp(w). It is actually not difficult to generalize the result

of [25] concerning convergence to the case of more general dilation matrices:

Theorem 3.4. If S is a linear convergent scheme according to Section 3.3 which is in proximity

with the (nonlinear) scheme T , then T converges for dense enough input data.

The precise statement is analogous to the regular grid case. It is given in Section 4.2 together

with its proof. As to smoothness, we have the following result:

Theorem 3.5. Assume that the linear subdivision scheme S and and the scheme T fulfill the local

proximity inequality (3.17) w.r.t. some class PN,σ of σ-dense input. Then the limit of subdivision

using T is continuously differentiable w.r.t. the characteristic parametrization. More precisely,

the function T∞,0p0 ◦ χ−1 is well-defined and C1 in a neighborhood of the (extraordinary) point

χ(0).

Knowing that the geometric analogues considered in Section 2.2 fulfill local first order prox-

imity inequalities with the linear scheme they are derived from, we conclude:

Corollary 3.6. Theorems 3.4 and 3.5 concerning convergence and smoothness apply to the

following kinds of geometric subdivision rules: the log-exp analogue, the intrinsic mean analogue,

and the projection analogue.

The proofs of these statements can be found in Section 4.2.
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4. Proofs

Concerning the constants in the proofs of this section we employ the following conventions:

Whenever it is possible, we use a generic constant C which can change from line to line. However,

there are some proofs where it is necessary to distinguish constants. For such constants we do

not use the symbol C.

4.1. Proofs for the regular grid case

In this section we prove Theorem 2.4 and Theorem 2.5. The first two statements below

are auxiliary statements which concern linear subdivision. Lemma 4.1 starts from (2.3) and

establishes inequality (4.18). The main point here is that differences are incorporated in the

right-hand side of (4.18) and that general input data are considered, which will be important

for the analysis of nonlinear schemes. We did not find this statement in the literature, even it is

possibly already known.

Lemma 4.1. Assume that S = Sa,M is a linear convergent subdivision rule which satisfies sum

rules of order k. Then for every s > 1 there is C ≥ 1 such that, for all p ∈ l∞(Zd) and all

n ∈ N0,

sup
|µ|=k

‖∇µSnp‖∞ ≤ C(ρks)
n sup
|µ|=k

‖∇µp‖∞. (4.18)

Proof. By definition of ρk (2.3) there is a constant C > 0 such that, for s > 1,

‖∇µSnδ0‖∞ ≤ C(ρks)
n for all multiindices µ with |µ| = k. (4.19)

The constant C depends on the choice of s but not on the exponent n. We use the notation l(Zd)

for the space of sequences on Zd. We consider the mapping

p 7→ {∇µSnp}|µ|=k (4.20)

from l(Zd) to l(Zd)r, where r =
(
k+d−1
k

)
is the number of different multiindices with |µ| = k.

This mapping is linear. We show that this mapping only depends on the k-th order differences of

the input p, i.e., it only depends on {∇µp}|µ|=k : Since S satisfies sum rules of order k, S leaves

the set of samples of polynomials of degree lower than k invariant (see [12], Theorem 5.2). A

sample of a polynomial p with deg(p) < k is characterized by the vanishing of all differences of

order k, i.e., ∇µp = 0 for all µ with |µ| = k. These two observations guarantee that the property

∇µp = 0 for all multiindices µ with order k implies ∇µSp = 0 whenever |µ| = k. This implies

that the mapping (4.20) only depends on the k-th order differences of p.

16



With these observations at hand we use the locality of the subdivision scheme S and construct

a scenario which allows us to apply the uniform bounded principle which then yields (4.18). To

that end, we consider the ‘discrete simplex’ T = {α ∈ Nd0 : |α| < k}, and choose N > 2k so large

that the limit function of subdivision on [−1, 1]d for input p only depends on the values of p on

Q = {−N, . . . , N}d (It is well known that for finitely supported masks such an N exists.) We

start with (possibly unbounded) data p ∈ l(Zd) and find p′ ∈ l(Zd) with

∇µp = ∇µp′ (µ with |µ| = k) and p′|T = 0. (4.21)

This is done by finding a polynomial with degree lower than k which agrees with p on T and

subtracting it from p. We use the notation l(A) for the space of sequences on Zd vanishing outside

A ⊂ Zd. We consider the projection operator P : l(Zd \ T )→ l(Q \ T ), which sets values outside

Q to 0. We get a constant C which is independent of p such that

sup
|µ|=k

‖∇µPp‖∞ ≤ C sup
|µ|=k

‖∇µp‖∞.

We consider the family of operators

(ρks)
−n∇µSn : l(Q \ T )→ l∞(Zd),

indexed by the mutiindex µ and the exponent n. This family is bounded on any sequence q. The

principle of uniform boundedness yields a constant C, independent of q, n, and µ, such that

sup
|µ|=k

‖∇µSnq‖∞ ≤ C(ρks)
n sup
|µ|=k

‖∇µq‖∞

for q ∈ l(Q \ T ).

We consider general p ∈ l∞(Zd) and choose a sequence p′ according to (4.21) and define

q ∈ l(Q \ T ) by q = Pp′. Then we use the above estimates to get

sup
|µ|=k

‖∇µSnq‖∞ ≤ C(ρks)
n sup
|µ|=k

‖∇µp‖∞.

Furthermore, for any multiindex µ of order k, we have that ∇µSnq = ∇µSnp on {−k, . . . , k}d.

In view of the translation invariance of S, this implies (4.18).

The next statement also concerns linear subdivision. Its purpose is to estimate Lip-seminorms

of the limit functions by differences of the data.

Proposition 4.2. Assume that Sa,M is a linear convergent subdivision operator which has max-

imal sum rule order k. Then for every γ which is smaller that the smoothness index ν(a,M), the
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mapping p 7→ p ∗ φ(Mm·) of data on level m to limit functions is a bounded linear operator from

l∞(Zd) to Lipγ for every input level m. The growth of the bounds of the Lipγ-seminorms in m

can be estimated by differences of input data as follows: For all s > 1 there is C ≥ 1 such that

|p ∗ φ(Mm·)|Lipγ ,k ≤ C(|λmax|s)mγ sup
|µ|=k

‖∇µp‖∞, (4.22)

where C is independent of m, and λmax is an eigenvalue of M of greatest modulus.

Proof. Since the refinable function φ is a Lipγ function, we have, for every s > 1, a constant

C > 0 such that, for every nonnegative integer m,

|φ(Mm·)|Lipγ ,k ≤ C|λmax|mγsm.

As a consequence, the Lipγ-seminorm for arbitrary bounded input data p can be estimated by

|p ∗ φ(Mm·)|Lipγ ,k ≤ C|λmax|mγsm‖p‖∞.

This is due to the compact support of φ. Since S satisfies k-th order sum rules, q ∗ φ is a

polynomial with deg(q ∗φ) < k for any sample q of a polynomial of degree lower than k (see e.g.

the discussion around Theorem 2.1 in [12]). Therefore, the directional difference ∇kyp ∗ φ of the

limit function for input p only depends on the k-th order differences {∇µp}|µ|=k.

We use the notation of the proof of Lemma 4.1, and define, for p ∈ l∞(Zd), the sequence

q ∈ l(Q \ T ) by q = Pp′, where p′ is chosen according to (4.21). Then in the cube [−1, 1]d, the

limit functions p ∗ φ and q ∗ φ are equal. If we consider the smaller cube [−1/2, 1/2]d, we find a

step size h > 0, such that the difference ∇kyp ∗ φ and ∇kyq ∗ φ agree for all vectors y ∈ Rd with

‖y‖ ≤ h.

We consider the family of operators l(Q \ T )→ Lipγ ,

q 7→ |λmax|−mγs−mq ∗ φ(Mm·),

which is indexed by the exponent m. This family is bounded on every sequence q ∈ l(Q \ T ).

Therefore, the principle of uniform boundedness yields a constant C > 0, which is independent

of q and m such that

|q ∗ φ(Mm·)|Lipγ ,k ≤ C|λmax|mγsm sup
|µ|=k

‖∇µp‖∞.

This yields (4.22).
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The next lemma consists of Equations (4.23) and (4.24). The estimate (4.23) establishes a

certain contractivity of the nonlinear scheme T. A similar estimate is also an important inter-

mediate step in all previous smoothness proofs. In addition, we obtain the important estimate

(4.24) which is central in the proof of Theorem 2.5.

Lemma 4.3. Assume that Sa,M is a linear convergent subdivision scheme with maximal sum rule

order k. Assume furthermore that Sa,M and the (nonlinear) scheme T fulfill k-order proximity

conditions w.r.t. some class PN,σ of σ-dense input.

Then for any s > 1, we can find C > 0 and σ′′ > 0 such that the following is true: For input

p ∈ PN,σ′′ , for which we assume that Tnp is defined for all n and that Tnp ∈ PN,σ for all n, for

any j ∈ {1, . . . , k} we have the inequality

sup
|µ|=j

‖∇µTnp‖∞ ≤ C max(ρk, |λmin|−j)nsn sup
|µ|=1

‖∇µp‖∞, (4.23)

where C is independent of p. In particular there is L > 0 with

Ωj(T
np) ≤ L(ρjρ1s)

n sup|µ|=1 ‖∇µp‖2∞. (4.24)

Proof. If the statement holds for some s > 1, it obviously holds for any s′ > s. So we can fix

s > 1 such that ρjs < 1 for all j = 1, . . . , k. For every j ∈ {1, . . . , k} there is, by Lemma 4.1, a

constant C ′j (dependent on s) such that

sup
|µ|=j

‖∇µSnp‖∞ ≤ C ′j(ρjs)n sup
|µ|=j

‖∇µp‖∞.

We let C ′ = max1≤j≤k C
′
j . Furthermore, we denote the proximity constants from (2.14) by CP .

For the next estimate, we consider j ∈ {1, . . . , k} and a multiindex µ of order j. We apply

Lemma 4.1 and (2.14) in order to obtain , for every n ∈ N, the estimate

‖∇µTnp‖∞ ≤
n−1∑
l=0

‖∇µSl(T − S)Tn−l−1p‖∞ + ‖∇µSnp‖∞

≤ 2C ′
n−1∑
l=0

ρljs
l sup
|η|=j−1

‖∇η(T − S)Tn−l−1p‖∞ + C ′ρnj s
n sup
|µ|=j

‖∇µp‖∞

≤ 2C ′CP

n−1∑
l=0

ρljs
lΩj(T

n−l−1p) + C ′ρnj s
n sup
|µ|=j

‖∇µp‖∞. (4.25)

Recall that by Theorem 2.1, ρm = max(ρk, |λmin|−m) for m < k. We use induction on ‘the

order of differences’ j to show (4.23) and start with the case j = 1. We show (4.23) for the case

j = 1 for the constants

C = C1 := 2C ′ and σ′′ = σ′′1 := min(σ,
ρ1s(1− ρ1s)

8C ′2CP
, 1). (4.26)
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To that end, we perform induction on the subdivision level n. The case n = 0 is clear, since

C ′ ≥ 1. As to general n assume that (4.23) holds for all smaller values than n (still, j = 1).

Observing that we set C = 2C ′ in (4.26), we have

Ω1(Tn−l−1p) = sup
|µ|=1

‖∇µTn−l−1p‖2∞ ≤ 4C ′2(ρ1s)
2n−2l−2 sup

|µ|=1

‖∇µp‖2∞ (4.27)

by the induction hypothesis. This implies

sup
|µ|=1

‖∇µTnp‖∞ ≤ C ′ρnj sn
(

8C ′2CP
( n−1∑
l=0

(ρ1s)
n−l−2

)
sup
|µ|=1

‖∇µp‖∞ + 1
)

sup
|µ|=1

‖∇µp‖∞. (4.28)

Applying the geometric series, we get∑n−1

l=0
(ρ1s)

n−l−2 ≤ (ρ1s)
−1(1− ρ1s)

−1. (4.29)

Our choice of σ′′1 in (4.26) implies that

sup|µ|=1 ‖∇µp‖∞ ≤ σ′′1 ≤ 1/8 C ′−2C−1
P ρ1s(1− ρ1s). (4.30)

Plugging (4.29) and (4.30) into (4.28), we obtain (4.23) for the case j = 1.

We assume now that (4.23) is valid for j − 1 instead of j and perform the induction step. As

in the case j = 1 we may assume that s is chosen in a way such that ρ1s < 1, as well as ρjs < 1.

We let

s′ = s1/(j+1). (4.31)

By the induction hypothesis there is a constant Cj−1 > 0 and a ‘denseness constant’ σ′′j−1 such

that, for m = 1, . . . , j − 1,

sup
|µ|=m

‖∇µTnp‖∞ ≤ Cj−1(ρms
′)n sup
|µ|=m

‖∇µp‖∞

for all input data p ∈ PN,σ′′j−1
for which iterated subdivision using T is defined and for which

T rp ∈ PN,σ for all r ∈ N. We perform induction on n to show (4.23) for the constants

C = 2C ′ and σ′′ = σ′′j = min(σ′′j−1,
ρ1s((ρ1s)

−1 − 1)ρjs

2DCP
, 1),

where we define the constant D by

D = 2C1C
′ + |Γj |Cj+1

j−12j+1.

The choice of D will become clear from the following. The case n = 0 is obvious. For the

induction step we assume that (4.23) is valid for smaller values than n. There is only one γ ∈ Γj
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with γj 6= 0, namely γ = (1, 0, . . . , 0, 1). Using the induction hypothesis its contribution to (2.13)

can be estimated as follows:

sup
|µ|=j

‖∇µTn−l−1p‖∞ sup
|µ|=1

‖∇µTn−l−1p‖∞ ≤ 2C1C
′(ρjρ1s

2)n−l−1 sup
|µ|=1

‖∇µp‖2∞.

For the other summands γ ∈ Γj (with γj = 0) we obtain

j∏
i=1

sup
|µ|=i
‖∇µTn−l−1p‖γi∞ ≤

j∏
i=1

Cγij−1(ρis
′)γi(n−l−1) sup

|µ|=i
‖∇µp‖γi∞

≤ Cj+1
j−1s

′(j+1)(n−l−1)

j∏
i=1

ρ
γi(n−l−1)
i 2iγi sup

|µ|=1

‖∇µp‖γi∞

≤ Cj+1
j−1s

(n−l−1)2j+1 sup
|µ|=1

‖∇µp‖2∞
j∏
i=1

ρ
γi(n−l−1)
i . (4.32)

Next, we show the estimate ∏j

i=1
ργii ≤ ρjρ1. (4.33)

We distinguish different cases: If j ≤ − log|λmin| ρk, which means that ρk ≤ |λmin|−j , we apply

Theorem 2.1 and obtain that ρi = |λmin|−i for all 1 ≤ i ≤ j. As a consequence,∏j

i=1
ργii = |λmin|−j−1 = ρj |λmin|−1 ≤ ρjρ1,

where the last inequality is also a consequence of Theorem 2.1. This shows (4.33) in case that

j ≤ − log|λmin| ρk. So we can assume that j > − log|λmin| ρk, i.e., ρk > |λmin|−j . If there is some

non-zero factor γi0 such that i0 ≥ − log|λmin| ρk, then∏j

i=1
ργii ≤ ρkρ1 = ρjρ1.

This is true since ρi0 = ρk = ρj and ρi ≤ ρ1. If γi 6= 0 only for i smaller than − log|λmin| ρk, then∏j

i=1
ργii = |λmin|−j−1 ≤ ρjρ1.

This shows (4.33). Using the estimate (4.33) in (4.32), we obtain

Ωj(T
n−l−1p) ≤ (2C1C

′ + (|Γj | − 1)Cj+1
j−12j+1)(ρjρ1s

2)n−l−1 sup
|µ|=1

‖∇µp‖2∞

≤ D(ρjρ1s
2)n−l−1 sup

|µ|=1

‖∇µp‖2∞. (4.34)
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We use (4.25) and (4.34) to obtain

sup
|µ|=j
‖∇µTnp‖∞ ≤ 2C ′CP

n−1∑
l=0

ρljs
lΩj(T

n−l−1p) + C ′ρnj s
n sup
|µ|=j

‖∇µp‖∞

≤ 2C ′CPD

n−1∑
l=0

(ρjs)
n−1(ρ1s)

n−l−1 sup
|µ|=1

‖∇µp‖2∞ + C ′ρnj s
n sup
|µ|=1

‖∇µp‖∞

≤ C ′ρnj sn
(

2CPD(ρ1s)
−1((ρ1s)

−1 − 1)−1(ρjs)
−1 sup
|µ|=1

‖∇µp‖∞ + 1
)

sup
|µ|=1

‖∇µp‖∞

≤ 2C ′ρnj s
n sup
|µ|=1

‖∇µp‖∞.

The last inequality is valid since, by the choice of σ′′j , the term in brackets is smaller than 2. So

the induction w.r.t. both n and j is complete. Finally, the statement (4.24) is shown by (4.27)

and (4.34).

With these preparations we can prove Theorem 2.4.

Proof of Theorem 2.4. We choose s > 1 such that sρ1 < 1. We let φ0 be the piecewise linear

B-Spline. Since both φ0 and the refinable function φ associated with S reproduce constant

functions and have compact support, the inequality

‖p ∗ φ0 − p ∗ φ‖∞ ≤ C1 sup|µ|=1 ‖∇µp‖∞

holds for all bounded input data p with C1 not depending on p. Furthermore,

‖p ∗ φ0‖∞ ≤ C2‖p‖∞ and ‖p ∗ φ‖∞ ≤ C3‖p‖∞,

where the constants are the corresponding operator norms. Let C4 be the constant from the first

order proximity condition, and C5 be the constant from (4.23). We use the symbol σ′′1 for the

constant from (4.26). Then we let

σ′′ = min
(
σ′′1 ,

σ′

4C1C5
,
(σ′(1− ρ2

1s
2)

2C3C4C2
5

)1/2

,
σ

C5

)
. (4.35)

We show that, for input data p ∈ PN ′′,σ′′ , Tnp is defined for all n ∈ N, and that Tnp ∈ PN,σ.

Then the assumptions of Lemma 4.3 are met and we can use this lemma to deduce convergence.

We use induction on n. As induction hypothesis we assume that for all k = 0, . . . , n, T kp is well-

defined and that it belongs to PN,σ. Furthermore, we assume that T kp takes values in Uσ′(N
′′).

Then Tn+1p is defined, and

‖Tnp ∗ φ(Mn·)− Tn−1p ∗ φ(Mn−1·)‖∞ = ‖(T − S)Tn−1p ∗ φ(Mn·)‖∞

≤ C3C4 sup
|µ|=1

‖∇µTn−1p‖2∞.
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Using Lemma 4.3 and the above estimate we obtain, for m < n,

‖Tnp ∗ φ0(Mn·)− Tmp ∗ φ0(Mm·)‖∞

≤ ‖Tnp ∗ (φ0(Mn·)− φ(Mn·))‖∞ +

n−1∑
k=m

‖T k+1p ∗ φ(Mk+1·)− T kp ∗ φ(Mk·)‖∞

+ ‖Tmp ∗ (φ0(Mm·)− φ(Mm·))‖∞

≤ C1 sup
|µ|=1

‖∇µTnp‖∞ + C3C4

n−1∑
k=m

sup
|µ|=1

‖∇µT kp‖2∞ + C1 sup
|µ|=1

‖∇µTmp‖∞

≤ 2C1C5(ρ1s)
m sup
|µ|=1

‖∇µp‖∞ + C3C4C
2
5

n−1∑
k=m

(ρ1s)
2k sup
|µ|=1

‖∇µp‖2∞

≤ σ′

2 (ρ1s)
m + C3C4C

2
5 (ρ1s)

m(1− ρ2
1s

2)−1 sup
|µ|=1

‖∇µp‖2∞ ≤ σ′(ρ1s)
m. (4.36)

The last inequality is true because of the choice of σ′′ in (4.35) and because, by assumption,

‖∇µp‖∞ ≤ σ′′. If we let m = 0 in (4.36), we obtain that Tn+1p takes values in Uσ′(N
′′).

Furthermore, sup|µ|=1 ‖∇µTn+1p‖∞ ≤ C5(σ/C5) = σ. This completes the induction.

A straightforward consequence of (4.36) is that Tn+1p ∗ φ0(Mn+1·) is a Cauchy sequence,

which implies the convergence of T for input data p which belong to PM ′′,σ′′ . Furthermore,

‖Tnp ∗ (φ0(Mn·)− φ(Mn·))‖∞ ≤ C1 sup|µ|=1 ‖∇µTnp‖∞,

and the right hand side approaches 0 as n → ∞. This implies that the sequence of uniformly

continuous functions Tnp ∗ φ(Mn·) converges to the limit of T for input p as n→∞. Hence, we

also have that the limit fp of the nonlinear scheme is uniformly continuous. This completes the

proof.

Our next objective is the proof of our main result on smoothness of nonlinear subdivision

schemes in the regular grid case.

Proof of Theorem 2.5. We show that Tnp ∗ φ(Mn·) is a Cauchy sequence in Lipγ . Then Theo-

rem 2.4 implies that the limit function of T belongs to Lipγ . We choose s > 1 such that s2ρ1 < 1.

We let C1 be the constant of Proposition 4.2 and C2 be the proximity constant of (2.14), and
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we denote the constant of (4.24) by L. We use Proposition 4.2 to estimate

|Tn+1p ∗ φ(Mn+1·)− Tnp ∗ φ(Mn·)|Lipγ ,k

= |Tn+1p ∗ φ(Mn+1·)− STnp ∗ φ(Mn+1·)|Lipγ ,k

≤ C1|λmax|γnsn sup|µ|=k ‖∇µ(S − T )Tnp‖∞

≤ 2C1C2|λmax|γnsnΩk(Tnp). (4.37)

By (4.24),

Ωk(Tnp) ≤ L(ρkρ1s)
n sup|µ|=1 ‖∇µp‖2∞. (4.38)

By the definition of the smoothness index ν(a,M), we have ρk = |λmax|−ν(a,M). Therefore,

ρk|λmax|γ < 1. Using this fact and plugging (4.38) into (4.37) we get

|Tn+1p ∗ φ(Mn+1·)− Tnp ∗ φ(Mn·)|Lipγ ,k ≤ 2C1C2L rn sup|µ|=1 ‖∇µp‖2∞,

where r = ρk|λmax|γs2|λmin|−1 < 1. We apply this estimate to obtain

‖Tn+lp ∗ φ(Mn+l·)− Tnp ∗ φ(Mn·)‖Lipγ ,k

≤ |Tn+lp ∗ φ(Mn+l·)− Tnp ∗ φ(Mn·)|Lipγ ,k + ‖Tn+lp ∗ φ(Mn+l·)− Tnp ∗ φ(Mn·)‖∞

≤ C1C2L rn(1− r)−1 sup|µ|=1 ‖∇µp‖2∞.+ ‖Tn+lp ∗ φ(Mn+l·)− Tnp ∗ φ(Mn·)‖∞,

where the second term tends to 0 by Theorem 2.4. Therefore, Tnp∗φ(Mn·) is a Cauchy sequence

in Lipγ . This completes the proof.

Proof of Theorem 2.6. It remains to verify the proximity inequalities. The geometric analogues

considered in this corollary are instances of the so-called g-f -analogues intoduced in [26]. There-

fore the proximity inequalities for the intrinsic mean analogue (2.10), the log-exp analogue (2.11),

and the projection analogue (2.12) follow directly from Theorems 5.8 and 5.9 of [7].

Proof of Corollary 2.7. Theorem 2.6 ensures that the mentioned analogues produce limits fp

whose smoothness index ν(fp) is at least as high as the smoothness index ν(a,M) of the linear

scheme. Then the smoothness index of the refinable function ν(φ) equals the smoothness index

ν(a,M) [9]. The second statement of the corollary follows from the fact that if Sa,M produces

Ck limits, then the corresponding smoothness index ν(a,M) is strictly greater than k [10].
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4.2. Proofs for the case of irregular combinatorics

The purpose of this part is to prove Theorem 3.4 and Theorem 3.5. Our first task is to

establish contractivity of a nonlinear scheme T which is in proximity to a linear scheme S (as

in Section 3.3) near the singularity. We need the following lemma which is concerned with the

contractivity of the subdivision matrix of S.

Lemma 4.4. Let A : Rm → Rm be a matrix with dominant single eigenvalue 1 for the eigen-

vector v1 = (1, . . . , 1)T . We denote a subdominant eigenvalue of A by λ. We let ∆′(b) =

sup1≤k,j≤m |bk − bj | for b ∈ Rm. Then for every s > 1 there is C > 0 such that,

∆′(Alb) ≤ C(|λ|s)l∆′(b), for all l ∈ N, and all b ∈ Rm. (4.39)

This is Lemma 2.3 of [25]. Together with the proximity condition (3.17) we use it to establish

the next lemma which involves differences of subdivided data near the extraordinary point. We

employ the following notation: We consider data pn defined on Vn for some level n. For a subset

B ⊂ Vn, we let

DB(pn) := sup{|pn(x)− pn(y)| : x, y ∈ B, x and y are face-neighbors },

If B = Vn we drop the lower index.

Lemma 4.5. Assume that a linear scheme S as defined in Section 3.3 and the scheme T fulfill

the local proximity condition (3.17) w.r.t σ-dense input PN,σ. Then for s > 1 there is a constant

C > 0 and σ′′ > 0 such that the following is true: If the input data p0 belongs to PN,σ′′ , if iterated

subdivision for input p0 is defined, and if Tl−1,0p0 stays within PN,σ for all l ≤ n, then

Dctrln(D′n)(Tn−1,0p0) ≤ C(λs)nDctrl0(D′0)(p0), (4.40)

where λ is the subdominant eigenvalue of the subdivision matrix of S.

Proof. We start by rephrasing (4.39). For any s > 1 there is a constant CL ≥ 1 such that for

all levels n and all data pn on level n the following is true: The linear scheme is contractive for

data on the control sets of the inner areas D′n (defined by (3.16)) in the following sense

Dctrln(D′n)(Sn−1,0p0) ≤ CL(λs)nDctrl0(D′0)(p0). (4.41)

To see this, we consider the definition of the subdivision matrix A of the scheme S in Section 3.3.

The subdivision matrix A maps data on ctrl0(D′0) to subdivided data on ctrl1(D′1). Therefore, An

maps data on ctrl0(D′0) to n-times subdivided data on ctrln(D′n). In this interpretation, (4.39)
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estimates differences of dim(A) many subdivided data items by dim(A) many input data items.

Therefore, application of the triangle inequality and enlarging the constant C of (4.39) yields

(4.41).

We also rewrite the local proximity condition (3.17): There is a constant CP such that for

σ-dense input pn ∈ PN,σ on some data level n,

‖Snpn(w)− Tnpn(w)‖∞ ≤ CP (Dsupp(α·,w)(pn))2, (4.42)

where supp(α·,w) denotes the set of vertices on level n which contribute to the calculation of

Snp(w). Equation (4.42) is derived from (3.17) by using the triangle inequality and and the fact

that (a+ b)2 ≤ 2(a2 + b2) for a, b ∈ R. Hereby the constant C of (3.17) is enlarged.

By the locality of the proximity condition, control sets for S are control sets for T, too. Thus

an immediate consequence of (4.42) is that

‖(Snpn − Tnpn)|ctrln+1(D′n+1)‖∞ ≤ CP (Dctrln(D′n)(pn))2. (4.43)

With these preparations we define the ‘denseness’-bound σ′′ by

σ′′ =
(1− λs)λs

8CPC2
L

. (4.44)

For data p0 meeting the requirements of the lemma we show that

Dctrln(D′n)(Tn−1,0p0) ≤ 2CL(λs)nDctrl0(D′0)(p0), (4.45)

using induction on n. This implies (4.40) with C = 2CL. We start with n = 1 and estimate

Dctrl1(D′1)(T0p0) ≤ Dctrl1(D′1)(T0p0 − S0p0) +Dctrl1(D′1)(S0p0)

≤ 2‖T0p0 − S0p0)ctrl1(D′1)‖∞ +Dctrl1(D′1)(S0p0)

≤ 2CP (Dctrl0(D′0)(p0))2 + CL(λs)DV0
(p0)

≤ CL(2CPDctrl0(D′0)(p0) + λs)Dctrl0(D′0)(p0)

≤ 2CL(λs)Dctrl0(D′0)(p0).

The second inequality estimates differences by twice the sup-norm of data. For the third in-

equality we used proximity in the form of (4.43) and the contractivity of the linear scheme near

the singularity in the form of (4.41). For the fourth inequality notice that CL ≥ 1. The last

inequality is a consequence of our choice of σ′′ in (4.44). As induction hypothesis we assume
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that (4.45) is true for all l < n. We now show (4.45) by estimating

Dctrln(D′n)(Tn−1,0p0)

≤
∑n

l=1
Dctrln(D′n)(Sn−1,lTl−1,0p0 − Sn−1,l−1Tl−2,0p0) +Dctrln(D′n)(Sn−1,0p0)

≤
∑n

l=1
CL(λs)n−lDctrll(D′l)

(Tl−1,0p0 − Sl−1Tl−2,0p0) +Dctrln(D′n)(Sn−1,0p0)

≤
∑n

l=1
2CL(λs)n−lCP (Dctrll−1(D′l−1)(Tl−2,0p0))2 + CL(λs)kDctrl0(D′0)(p0).

For the second inequality we used the contractivity of S near the singularity in the sense of

(4.41). For the third inequality we estimated differences by twice the sup-norm and then applied

the proximity inequality (4.43). We use the induction hypothesis and obtain

Dctrln(D′n)(Tn−1,0p0)

≤
∑n

l=1
8CLCP (λs)n−lC2

L(λs)2(l−1)(Dctrl0(D′0)(p0))2 + CL(λs)nDctrl0(D′0)(p0)

≤ CLDctrl0(D′0)(p0)

[
C2
L

∑k

l=1
8CP (λs)n+l−2Dctrl0(D′0)(p0) + (λs)n

]
≤ CL(λs)nDctrl0(D′0)(p0)

[
8CPC

2
L

(1− λs)λs
Dctrl0(D′0)(p0) + 1

]
≤ 2CL(λs)nDctrl0(D′0)(p0).

For the first inequality we use the contractivity of T which is the induction hypothesis. The last

inequality is true by our choice of σ′′. This completes the induction.

We have collected all information necessary to show convergence. Below, Theorem 4.6 gives

the precise version of Theorem 3.4. The formulation is rather technical, which is mainly due

to the fact that nonlinear schemes are in general not globally defined. We therefore have to

guarantee the well-definedness of the data during the subdivision process.

Theorem 4.6. Let S and T fulfill a local proximity condition w.r.t. some PN,σ. Assume that

Tnpn takes its values in some set N ′, where N ⊂ N ′ ⊂ Rd, for all input data pn in PN,σ on all

level n. Assume further that there is N ′′ ⊂ N and σ′ > 0 such that the σ′-neighborhood Uσ′(N
′′)

obeys Uσ′(N
′′) ∩N ′ ⊂ N. Then there is σ′′ > 0 such that T converges for p ∈ PN ′′,σ′′ , and

S∞,i+1Ti,0p→ T∞,0p as i→∞. (4.46)

This convergence is in the sense of the sup norm.

Proof. We split the proof of this statement into several parts. In part (1) we obtain the contrac-

tivity of the nonlinear scheme T, where we assume that Tn,0p0 is defined for all n and certain
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input data p0. In part (2) we define interpolation operators which extend the discrete data on

different levels to continuous functions and derive some properties. In part (3) we define the

constant σ′′ and explain our choice of σ′′. In part (4) we apply the interpolation operators from

part (2) to show that that subdivision by T is well defined for σ′′-dense data p0 in PN ′′,σ′′ ,

thus justifying the assumption of (1). Furthermore, we use the proximity of S and T and the

contractivity of T to derive the convergence of T for data in PN ′′,σ′′ . In part (5), we use part (4)

and the interpolation operator from part (2) to show (4.46).

(1) In this part we obtain contractivity of T. We denote the subdominant eigenvalue of the

subdivision matrix of the linear scheme S by the symbol λ, and we let M be the dilation matrix

corresponding to S. We choose s > 1 such that

γ := smax(|λ|, 1/
√

detM) < 1.

We show that there is σ′′1 and C1 ≥ 1 such that the following is true: If input data p0 on level 0

belongs to PN,σ′′ , if iterated subdivision for input p0 is defined, and if pl = Tl−1,0p0 stays within

PN,σ for all l ≤ n, then

D(Tn−1,lpl) ≤ C1γ
n−lD(pl). (4.47)

This is a consequence of the corresponding statement near the singularity which is formulated in

Lemma 4.5 and the corresponding statement for the regular mesh case which is Lemma 4.3. The

constant C1 is the product of the corresponding constants of Lemma 4.3 and Lemma 4.5, and σ′′1

is obtained as follows: We apply Lemma 4.5 for the denseness bound σ used in the statement of

the theorem. We obtain a constant σ′′Lemma 4.5. Then we apply Lemma 4.3 for this constant, i.e.,

we replace the σ in Lemma 4.3 by σ′′Lemma 4.5. The resulting denseness bound is denoted by σ′′1 .

In order to conclude (4.47), one has to show that ‘no interaction takes place between the

neighborhood of the singularity and the regular part’: To that end we split the domain D into

the inner area D′n (defined by (3.16)), the rings Di, i = 0, . . . , n− 1 and the ‘outer’ ring

D−1 = D \D′.

The union of the corresponding n-th level control sets equals Vn and control sets of neighboring

items of the splitting overlap (recall that control sets were defined w.r.t. the linear scheme S which

are also control sets w.r.t. T by the local proximity condition). We consider (4.47) separately

on the items of the splitting: The control set of the outer ring D−1 intersected with each sector

has regular combinatorics on all data levels. Therefore the validity of (4.47) on ctrln(D−1) is
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a consequence of Lemma 4.3. On D′n, (4.47) is a direct consequence of Lemma 4.5 applied to

ctrln(D′n). We consider the rings Di : For each segment Dj
i of the i-th ring we consider its n-th

level control set and get

Dctrln(Dji )
(Tn−1,0p0) ≤ CLemma 4.3(sdetM)(n−i)/2Dctrli(Dji )

(Ti−1,0p0)

≤ CLemma 4.3CLemma 4.5(sdetM)(i−n)/2(sλ)iDctrl0(D0)(p0) ≤ C1γ
nD(p0).

Altogether, this shows (4.47) and completes part (1).

(2) The convergence of subdivision with T is quite intricate. This mostly comes from the fact

that the well-definedness of iterated application of T has to be guaranteed. For that we need

interpolation operators Ii which map data on level i to a uniformly continuous function on the

domain D. The domain D is perfectly suited to smoothness analysis across sector boundaries

(not near the central point). However, in this part we are only concerned with convergence and

we use a homeomorphism E : D → R2 to reparametrize data on each level, and to reparametrize

limit functions. E maps entire D to the plane by first squeezing the j-th sector into a sector of

opening angle 2π/k with a shear transformation and then rotating it by an angle of 2πj/k. It is

straightforward to see that there are constants c1, c2 such that for x, y ∈ D,

c1 dist(x, y) ≤ dist(E(x), E(y)) ≤ c2 dist(x, y).

This implies that convergence of a scheme is invariant under reparametrization by means of E.

The points E(Vi) are still associated with a k-regular combinatorics. By connecting points

in E(Vi) with straight lines according to the combinatorics we get a realization of its edges and

faces in R2. For defining the interpolation operator Īi which maps data on E(Vi) to a function

on R2 we split each face into triangles, each of them determined by the face’s barycenter and an

edge. We get data for the barycenter by the barycenter of the data on the neighboring vertices.

Then we use linear interpolation on the triangles. For x, y in a face and data pn defined on

E(Vn), we obviously have

sup
x,y belong to the same face

‖Īnpn(x)− Īnpn(y)‖Rd ≤ D(pn). (4.48)

Furthermore the infimum d′ of distances of neighboring vertices in E(Vi) satisfies

c3(detM)−i/2 ≤ d′ ≤ {diamF : F is a face on level i} ≤ c4(detM)−i/2, (4.49)

where the constants c3, c4 are independent of the the level i. In addition, there is a constant R

for all levels i such that the value

Sipi(v) is an affine average of {pi(w) : w ∈ B(v, (detM)−i/2R)}. (4.50)
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Here the considered points w are elements of E(Vi), and B(x, r) is the open ball with radius r

around x.

Interpolation operators Ii mapping data on Vi to functions on D are obtained from the

operators Īi by reversing the reparametrization E.

The interpolation operators Ii have the following properties: There are constants CB , CI > 0,

which depend neither on i nor on bounded data pi on level i, such that

‖Ii+1Sipi − Iipi‖ ≤ CBD(pi), (4.51)

‖S∞,ipi|Vi − pl‖ ≤ ‖S∞,ipi − Iipi‖ ≤ CID(pi). (4.52)

When showing (4.51) and (4.52) we may replace Ii by Īi, and we may reparametrize both data

and limit functions using the map E. This is justified, since a reparametrization does not effect

the statements. We begin with (4.51). For arbitrary x ∈ R2 we choose faces Fi and Fi+1

containing x on levels i and i + 1, respectively. We consider vertices vi of Fi and vi+1 of Fi+1

and estimate

‖Īi+1Sipi(x)− Īipi(x)‖

≤ ‖Īi+1Sipi(x)− Īi+1Sipi(vi+1)‖+ ‖Sipi(vi+1)− pi(vi)‖+ ‖Īipi(vi)− Īipi(x)‖

≤ D(Sipi) +D(pi) + ‖Sipi(vi+1)− pi(vi)‖.

In order to estimate the last summand on the right hand side, note that by (4.50) the value

Sipi(vi+1) is uniquely determined by pi|E(Vi)∩B(vi+1,(detM)−i/2R). With the constant c4 of (4.49)

it follows that dist(vi, vi+1) ≤ 2c4(detM)−i/2. Consequently, max{dist(vi, y) : y ∈ E(Vi) ∩

B(vi+1, 2
−iR)} ≤ 2c4(detM)−i/2 +(detM)−i/2R. The left hand inequality in (4.49) now implies

that the number of faces on level i which are not disjoint to the ball B(vi, (2c4+R)(detM)−i/2) is

bounded by some integerD which is independent of the level i and vi.WithB∗ := B(vi+1, (detM)−i/2R),

we can write Sipi(vi+1) =
∑
q∈E(Vi)∩B∗ αqpi(q) with

∑
q∈E(Vi)∩B∗ αq = 1 and

∑
q∈E(Vi)∩B∗ |αq| ≤

‖Si‖. We obtain

‖Sipi(vi+1)− pi(vi)‖ =

∥∥∥∥∑q∈E(Vi)∩B∗
αq(pi(q)− pi(vi))

∥∥∥∥
≤
∑

q∈E(Vi)∩B∗
|αq| ·maxq∈E(Vi)∩B∗ ‖pi(q)− pi(vi)‖ ≤ ‖Si‖DD(pi).

Altogether, it follows that

‖Īi+1Sipi − Īipi‖ ≤ D(Sipi) + (‖Si‖D + 1)D(pi). (4.53)

This implies (4.51), since ‖Si‖ is uniformly bounded in i.
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We show (4.52) for the interpolation operators Īi. Equipped with (4.53), we estimate, for

n > i,

‖Īn+1Sn,ipi − ĪnSn−1,ipi‖∞ ≤DSn,ipi + (‖Sn‖D + 1)D(Sn−1,ipi)

≤C1γ
n−i(‖Sn‖D + 2)D(pi),

where we used the contractivity of S which follows, for example, from part (1), since S can be

seen as a scheme in proximity to S. For n′′ ≥ n′ ≥ n ≥ i we make use of the geometric series and

get

‖Īn′′+1Sn′′,ipi − Īn′Sn′−1,ipi‖∞ ≤C( sup
n∈N0

‖Sn‖D + 2)γn−i
1

1− γ
D(pi). (4.54)

Thus {ĪnSn−1,ipi}n>i is a Cauchy sequence in the space of bounded continuous functions. Since

these functions are uniformly continuous, so is the limit, called f for the moment. Now, ‖f |E(Vn)−

Sn−1,ipi‖∞ ≤ ‖f − ĪnSn−1,ipi‖ → 0 for n → ∞. Thus f equals S∞,ipi. Letting n′ = i in (4.54)

yields the estimate

‖f − Īipi‖ = lim
n′′→∞

‖Īn′′+1Sn′′,ipi − Īipi‖ ≤
1

1− γ
( sup
n∈N0

‖Sn‖D + 2)D(pi).

This implies (4.52).

(3) We define the constant σ′′ which guarantees convergence by

σ′′ = min
(
σ′′1 ,

σ

C1
,

1− γ
2CBC1

σ′,
( 1− γ2

2CPC2
1

σ′
) 1

2
)
. (4.55)

The constant CB is given by (4.51), and the symbol CP denotes the proximity constant as used

in (4.43). We take C1, σ
′′
1 and the contractivity factor γ from part (1). For σ′′1 -dense input data

p0, contractivity of T in the sense of (4.47) is guaranteed whenever iterated subdivision for input

p0 is defined, and Tl−1,0p0 stays within PN,σ. The choice of the other items in (4.55) guarantees

these two properties as shown in part (4). The second item is important in the estimates (4.56)

and (4.58). The last two items are important in the estimates (4.57) and (4.59).

(4) We apply the interpolation operators from part (2) to show that subdivision with T is

well defined for σ′′-dense data p0 in PN ′′,σ′′ and that Ti,0p0 stays within PN,σ for all i. We use

induction on the subdivision level i. We consider input data p0 ∈ PN ′′,σ′′ . Since D(p0) < σ′′ < σ,

subdivision by T for input p0 is defined. From (4.47) we get that

D(T0p0) ≤ C1γD(p0) ≤ C1σ
′′ ≤ σ. (4.56)

The last inequality is a consequence of the choice of σ′′.
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Now we use the interpolation operators from part (2) and get

‖I1T0p0 − I0p0‖ ≤ ‖I1T0p0 − I1S0p0‖+ ‖I1S0p0 − I0p0‖

≤ ‖T0p0 − S0p0‖+ CBD(p0)

≤ CPD(p0)2 + CBD(p0) ≤ σ′

2 + σ′

2 . (4.57)

Here we used (4.51) for the second inequality and the proximity condition (4.43) for the third

inequality. The last inequality is a consequence of our choice of σ′′. From the assumptions we

made it follows that T0p0 takes its values in N. Combining this fact with (4.56), we get that

T0p0 ∈ PN,σ and thus T0p0 is in the domain of T1. This serves as the induction base (i=0).

We use as an induction hypothesis that Tn−1,0p0 is well-defined, that Tn−1,0p0 takes its values

in M, and that Tn−1,0p0 is in the domain of Tn, for n = 1, . . . , i.

From (4.47) we get

D(Ti,0p0) ≤ C1γ
i+1D(p0) ≤ C1σ

′′ ≤ σ. (4.58)

The last inequality is a consequence of the choice of σ′′.

Now we use the interpolation operators from part (2) and get

‖Ii+1Ti,0p0 − I0p0‖

≤
∑i

n=0
‖In+1Tn,0p0 − In+1SnTn−1,0p0‖+ ‖In+1SnTn−1,0p0 − InTn−1,0p0‖

≤ CP
∑i

n=0
D(Tn−1,0p0)2 + CB

∑i

n=0
D(Tn−1,0p0)

≤ CPC2
1

(∑∞

n=0
γ2n
)
D(p0)2 + CBC1

∑∞

n=0
γnD(p0)

≤ CPC
2
1

1− γ2
D(p0)2 +

CBC1

1− γ
D(p0) ≤ σ′

2 + σ′

2 . (4.59)

Here we used (4.51) and the proximity condition (4.43) for the second inequality. The last

inequality is a consequence of our choice of σ′′. From our assumptions it follows that Ti,0p0 takes

its values in N. Combining this fact with (4.58) we get that Ti,0p0 ∈ PN,σ and thus Ti,0p0 is in

the domain of Ti+1 which means that Ti+1,0p0 is well-defined. This completes the induction.

As a consequence, for σ′′-dense input in PN ′′,σ′′ , Ti,0p0 exists for all i and T is contractive

for such input in the sense of (4.47). Toward convergence, we choose i′′ ≥ i′ ≥ i and estimate

‖Ii′′+1Ti′′,0p0 − Ii′+1Ti′,0p0‖ ≤
CPC

2
1

1− γ2
D(Ti′−1,0p0)2 +

CBC1

1− γ
D(Ti′−1,0p0)

≤ CPC
4
1

1− γ2
γ2iD(p0)2 +

CBC
2
1

1− γ
γiD(p0).
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Since the right hand side approaches 0 as i → ∞, the sequence {IiTi−1,0p0}i∈N is a Cauchy

sequence in C(D,Rd) and therefore convergent. Each sequence member is uniformly continuous,

which implies the same for the limit. Thus T converges for input in PN ′′,σ′′ .

(5) It remains to show (4.46). We consider ε > 0, and choose the index L large enough such

that for all indices i ≥ L, ‖T∞,0p0 − IiTi−1,0p0‖ < ε
2 . With (4.52) we estimate, for i ≥ L,

‖S∞,iTi−1,0p0 − IiTi−1,0p0‖ ≤ CID(Ti−1,0p0) ≤ CIC1γ
iD(p0).

Now we choose L0 > L such that CIC1γ
L0 < ε

2 . Then for all i ≥ L0, ‖T∞,0p0− S∞,iTi−1,0p0‖

< ε. This proves (4.46).

Our next task is to prove Theorem 3.5 which is a smoothness statement. For that we need

the following two lemmas concerning the characteristic parametrization of limit functions. We

refer to [18] for a detailed exposition of the characteristic parametrization.

Lemma 4.7. Let λ be the subdominant eigenvalue of the subdivision matrix A of a linear sub-

division scheme as defined in Section 3.3 (which has the single dominant eigenvalue 1). If we

choose the ring index n0 sufficiently large, we get a constant C > 0 such that, for all n ≥ n0 and

each C1 function f : Dn → Rd,

‖f ◦ χ−1‖C1(χ(Dn),Rd) ≤ C|λ|−n(detM)−n/2‖f‖C1(Dn,Rd) (4.60)

(M is the dilation matrix, Dn is the n-th ring). The constant C does not depend on the ring

index n ≥ n0.

Proof. By our assumptions on the linear scheme S, its characteristic map χ is 1-1 in a neigh-

borhood of the point 0. So we find an index n0, such that χ is 1-1 on D′n0
. In the following we

assume that n0 is chosen such that this requirement is fulfilled.

Our argument is based on the following fact which we verify only at the end of the proof:

There is a ring index n0 and a constant C > 0 such that the differential of the characteristic

map χ obeys

sup
x∈Dn

‖dxχn(v)‖ ≥ C|λ|n(detM)n/2‖v‖, (4.61)

where C is independent of the ring index n ≥ n0 and the point x ∈ Dn. We use the Euclidean

norm for the tangent vectors v; ‖dxχ−1
n ‖ is the induced operator norm. In other words, (4.61)

states that differentials are lower bounded, uniformly for all x ∈ Dn, with constant C independent
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of the ring. If (4.61) is proved, we can apply the inverse function theorem to obtain a constant

C > 0 such that

sup
y∈χ(Dn)

‖dyχ−1
n ‖ ≤ C|λ|−n(detM)−n/2, (4.62)

where C is independent of the ring index n ≥ n0. Using the submultiplicativity of operator norms

we get

‖dyf ◦ χ−1‖ ≤ ‖dχ−1(y)f‖ · ‖dyχ−1
n ‖ ≤ C|λ|−n(detM)−n/2‖f‖C1(Dn,Rd).

This implies (4.60), since sup-norms of functions do not change under reparametrization.

To show (4.61) we need some preparations. We consider a Jordan block of the subdivision

matrix A corresponding to a subdominant eigenvalue λ. We denote its multiplicity by m and

order the Jordan vectors wi, such that w0 is the eigenvector. For the Jordan vector with the

highest multiplicity, we have the expression

Anwm−1 =
∑m−1

i=0

(
n

i

)
λn−iwm−i−1. (4.63)

Since
(
n
i

)
grows as ni as n→∞, the dominating term in this expression is given by

(
n

m−1

)
λn−m+1w0.

If the subdominant eigenvalues of A are complex conjugate numbers, we use the vectors wi to

define new vectors vi where each component consists of the tuple of real number consisting

of the real and the imaginary part of the corresponding component of wi. If the subdominant

eigenvalues of A are real and equal, we use vectors wi as above and second set of vectors w̄i

corresponding to the second subdominant Jordan block with the same ordering as above. We

define new vectors vi where each component consists of the tuple of real numbers consisting of

the corresponding components of wi and w̄i, respectively.

Then the characteristic χ is the limit of subdivision for the input data stored in the vector

vm−1. We write χn for the restriction of χ to the ring Dn. We define ξn : D0 → R2 by

χn = ξn ◦ (Gn)−1. (4.64)

Then ξn is the limit function on D0 of linear (regular mesh) subdivision for 0-th level input data

obtained from Anvm−1.

We let ψ : D0 → R2 be the limit function for input data on level 0 obtained from v0 (which

plays an special role) and let fi : D0 → R2 be the limit functions for the other vi. All these limits

are C1 on D0, since they were obtained by regular mesh subdivision. Furthermore, the finiteness

of the control sets ctrl0(D0) yields

‖S∞,0p0‖C1(D0) ≤ C‖p0‖∞,
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for arbitrary input data p0 on ctrl0(D0). Knowing this and the fact that Anvm−1 is dominated

by
(

n
m−1

)
λn−m+1v0 for n → ∞, which is a consequence of (4.63), we see that the sequence of

mappings

(
n

m−1

)−1
λm−n−1ξn → ψ in C1(D0),

as n tends to∞. This implies that ψ is regular, since we assumed that ξn (which is a reparametriza-

tion and restriction of the characteristic map) is regular for sufficiently large n. This fact allows

us to estimate the Jacobian of ξn from below as follows: We start out by using the inverse triangle

inequality

‖dxξn(v)‖ = ‖
(

n
m−1

)
λn−m+1dxψ(v) +

∑m−2

i=0

(
n
i

)
λn−idxfm−i−1(v)‖ (4.65)

≥
(

n
m−1

)
|λ|n−m+1‖dxψ(v)‖ −

∑m−2

i=0

(
n
i

)
|λ|n−i‖dxfm−i−1‖‖v‖. (4.66)

We use that
(
n
i

)
grows as ni as n → ∞ to estimate the binomial coefficients. Due to the

compactness of D0 we find a constant C > 0 such that for all points x ∈ D0 and all functions fi

the differentials obey ‖dxfi‖ ≤ C. Since ψ is regular we get a lower constant c > 0 such that, for

all x ∈ D0, ‖dxψ(v)‖ ≥ c‖v‖. Making the constant c smaller (which comes form estimating the

binomial coefficients and multiplying with λm−1) these estimates help us to get

‖dxξn(v)‖ ≥ c nm−1|λ|n‖v‖ − C
∑m−1

i=1
ni|λ|n‖v‖. (4.67)

If we now choose n0 large enough, there is a constant c > 0 which does not depend on the index

n > n0 such that

‖dxξn(v)‖ ≥ cnm−1|λ|n‖v‖. (4.68)

With (4.64) we get

‖dxχn(v)‖ ≥ min
z
‖dzξn(v)‖ detMn/2 ≥ c|λ|n detMn/2‖v‖.

This proves (4.61).

Lemma 4.8. Let pn be input data on the control set ctrln(D′n) of the inner area D′n for data

level n. Then for large enough n0, and s > 1, there is a constant C > 0, which does not depend

on the level n ≥ n0 and data pn, such that

‖S∞,npn ◦ χ−1‖C1(χ(D′n),Rd) ≤ C|λ|−nsn‖pn|ctrln(D′n)‖∞. (4.69)

35



Proof. We use the notation of the proof of Lemma 4.7 and choose the integer n0 so large that

χ is regular and injective on D′n0
\ {0} and such that Lemma 4.7 works. Over the characteristic

parametrization, the subdivision scheme S produces C1 limit functions. As in Lemma 4.7, from

the finiteness of the control set ctrln0(D′n0
) we conclude that the differential of limit functions

w.r.t. the characteristic parametrization can be estimated by

sup
x∈χ(D′n0

)

‖dx(S∞,n0
pn0
◦ χ−1)‖ ≤ C‖pn0

|ctrln0 (D′n0
)‖∞, (4.70)

where the constant C is independent of the n0-th level input data pn0
given on ctrln0(D′n0

). In

order to derive (4.69) from (4.70) we consider input pn on level n > n0, given on the control sets

ctrln(D′n) of the inner area D′n. Reparametrizing this discrete data with the help of the similarity

transform G, i.e., applying Gn0−n, yields data p̄n0
on level n0. The limit function S∞,npn(over

D′n) equals S∞,n0
p̄n0
◦Gn−n0 . Our objective is to get the estimate

sup
x∈χ(D′n)

‖dx(S∞,npn ◦ χ−1)‖ ≤ C|λ|−nsn sup
x∈χ(D′n0

)

‖dx(S∞,n0
p̄n0
◦ χ−1)‖ (4.71)

with the constant C not depending on the level n > n0. If this estimate is established, then (4.69)

is a direct consequence of (4.70) if we keep in mind that a reparametrization of any function

does not change its sup-norm. To show (4.71), we split D′n and D′n0
into rings and show (4.71)

on the rings. More precisely, we show, letting r = n− n0, that

sup
x∈χ(Dl+r)

‖dx(S∞,npn ◦ χ−1)‖ ≤ C|λ|−rsr sup
x∈χ(Dl)

‖dx(S∞,n0
p̄n0
◦ χ−1)‖ (4.72)

with the constant C not depending on the l > n0 and r > 0. Although the exponents of γ and

s in (4.71) and (4.72) differ by n0 this does not affect the estimate since the resulting constant

γn0sn0 is independent of m and r or n, respectively. Although (4.72) does not consider the

central point 0, it nevertheless implies (4.71), since we know that both the function S∞,npn ◦χ−1

and the function S∞,n0
p̄n0
◦ χ−1 are continuously differentiable in 0.

In order to show (4.72) we consider the maps ξl+r and ξl introduced in the proof of Lemma 4.7.

Those maps are reparametrizations of the characteristic map on the rings Dl+r and Dl, respec-

tively, such that both maps are defined on D0. We use the mapping

Tl,r := ξl ◦ ξ−1
l+r : χ(Dl+r)→ χ(Dl)

to reparametrize limit functions defined on χ(Dl+r) and to obtain functions defined on χ(Dl) ⊂

χ(D′n0
) where we have the estimate (4.70). In order to analyze the mappings Tl,r we need some
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preparations. First, the estimate (4.68) together with the inverse function theorem shows that

there is a constant C > 0, independent of the indices l > n0 and r > 0, such that

sup
y∈χ(Dl+r)

‖dyξ−1
l+r‖ ≤ C(l + r)1−m|λ|−l−r. (4.73)

Secondly, we proceed similar to (4.65) and (4.67) in Lemma 4.7, but estimate from above, instead

of from below, to get a constant C which does not depend on l and x ∈ D0 such that

‖dxξl(x)‖ ≤ C|λ|llm−1‖dxψ‖. (4.74)

Using the chain rule and both (4.73) and (4.74), we obtain

sup
y∈χ(Dl+r)

‖dyTl,r‖ ≤ C
(
(l + r)1−m|λ|−l−r

)
·
(
|λ|llm−1

)
≤ C |lambda|−rsr,

where C is independent of l > n0 and r > 0. Since S∞,npn ◦ χ−1 = S∞,n0
p̄n0
◦ χ−1 ◦ Tl,r on the

ring χ(Dl), we can apply the chain rule to estimate

sup
x∈χ(Dl+r)

‖dx(S∞,npn ◦ χ−1)‖ ≤ sup
x∈χ(Dl+r)

‖dxTl,r‖ sup
x∈χ(Dl)

‖dx(S∞,n0 p̄n0 ◦ χ−1)‖

≤ C|λ|−rsr sup
x∈χ(Dl)

‖dx(S∞,n0
p̄n0
◦ χ−1)‖,

where the constant C does not depend on l > n0 and r > 0. This proves (4.72), which completes

the proof.

We show the main result of this part.

Proof of Theorem 3.5. We use the ring index n0 of Lemma 4.7 which guarantees that the esti-

mates of Lemma 4.7 and Lemma 4.8 are valid.

We show that the functions S∞,iTi−1,0p0 ◦ χ form a Cauchy sequence in the Banach space

C1(χ(D′n0
),Rd). Since this sequence (with each member reparametrized by χ−1) converges to

the limit of subdivision in the space C(D,Rd) according to Theorem 4.6, it also converges to the

reparametrized limit of subdivision in the space C(χ(D′n0
),Rd). So if the sequence is Cauchy

in C1 its limit agrees with the reparametrized limit of subdivision, which must then be a C1

function.

In order to show that the sequence S∞,iTi−1,0p0◦χ is Cauchy we show that there is a constant

C, which does not depend on the level i ≥ n0, such that

‖(S∞,i+1Ti,0p0 − S∞,iTi−1,0p0) ◦ χ−1‖C1(χ(D′n0
),Rd) ≤ CγiDctrl0(D′0)(p0), (4.75)
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for γ = s2 max((detM)−1/2, λ), and s > 1 chosen such that γ < 1. If (4.75) is shown, using the

geometric series yields the desired statement.

We consider (i+ 1)-st level data qi+1 given by

qi+1 := (Ti − Si)Ti−1,0p0.

According to (4.75), we have to estimate the C1 norm of the limit function S∞,i+1qi+1 of linear

subdivision using S for input data qi+1 w.r.t. the characteristic parametrization. For getting fine

enough estimates, we split the n0-th inner area D′n0
into the rings Dn (n0 ≤ n ≤ i) and the

(i + 1)-st inner area D′i+1. We estimate S∞,i+1qi+1 ◦ χ−1 on the domains χ(Dn) and χ(D′i+1)

separately.

We begin with the rings Dn. We fix n with n0 ≤ n ≤ i. From Lemma 4.5 we get a constant

C > 0 which does not depend on the ring index n such that

Dctrln(D′n)(Tn−1,0p0) ≤ CλnsnDctrl0(D′0)(p0). (4.76)

In Section 3.3 we assumed that the control sets ctrln(Dj
n) of the segments Dj

n have regular

combinatorics. Therefore, the limit function w.r.t. linear subdivision using S on the domain Dn

is obtained from n-th level data on ctrln(Dn) by means of subdivision on a regular part of the

mesh. By the locality of the proximity inequality, the same is true for using T instead of S. Then

Lemma 4.3 implies that

Dctrli(Dn)(Ti−1,0p0) ≤ C detM (n−i)/2si−nDctrln(Dn)(Tn−1,0p0)

≤ C detM (n−i)/2|λ|nsiDctrl0(D′0)(p0).

For the second inequality we used (4.76). The constants C do not depend on i. The proximity

inequality and the above estimate yield

Dctrli+1(Dn)(qi+1) ≤ C Dctrli(Di)(Ti−1,0p0)2

≤ C detMn−i|λ|2ns2iDctrl0(D′0)(p0)2, (4.77)

where the occurring constants do not depend on the index i. We turn to estimating C1 norms.

From the scaling relation and the translation invariance of the scheme S in regular parts of a

mesh we get a constant C which is again independent of i and the level n, where n0 ≤ n ≤ i,

such that

‖S∞,i+1qi+1‖C1(Dn,Rd) ≤ C detM i/2‖qi+1|ctrli+1(Di+1)‖∞. (4.78)
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These facts together with Lemma 4.7 imply

‖S∞,i+1qi+1 ◦ χ−1‖C1(χ(Dn),Rd) ≤ C |λ|−n(detM)−n/2‖S∞,i+1qi+1‖C1(Dn,Rd)

≤ C |λ|−n(detM)(i−n)/2‖qi+1|ctrli+1(Di+1)‖∞.

≤ C |λ|ns2i(detM)(n−i)/2Dctrl0(D0)(p0)2.

The constants C do not depend on the indices n and i. For the first inequality we used the

estimate (4.60) of Lemma 4.7. The second and the third inequality are a consequence of (4.78)

and (4.77), respectively. This proves (4.75) on the rings χ(Dn) with ring index n0 ≤ n ≤ i.

It remains to consider the (i+ 1)-st inner area D′i+1. We obtain

‖S∞,i+1qi+1 ◦ χ−1‖C1(χ(D′i+1),Rd) ≤ C |λ|−isi‖qi+1|ctrli+1(D′i+1)‖∞

≤ C |λ|−isiDctrli(D′i)
(Ti−1,0p0)2

≤ C |λ|is2iDctrl0(D′0)(p0)2,

where the constants C are independent of i. We use Lemma 4.8 for the first estimate. The second

inequality is obtained by applying the local proximity inequality, and Lemma 4.5 gives the last

inequality. This estimate proves (4.75) on χ(D′i+1), which completes the proof.

Note that in case we have pure eigenvalues, χ is already invertible on D′0 and Lemma 4.8 is

true for any n ∈ N0. So we can choose n0 = 0 in that case.

Finally, we show Corollary 3.6.

Proof of Corollary 3.6. It remains to verify the local proximity condition (3.17). This follows

directly from [6, Theorem 4] for the projection analogue, from [5, Proposition 7.2] for the log-exp

analogue, and from [25, Theorem 1.4] for the intrinsic mean analogue.
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