INTERPOLATORY MULTISCALE REPRESENTATION FOR
FUNCTIONS BETWEEN MANIFOLDS
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ABSTRACT. We investigate interpolatory multiscale transformations on irregular combina-
torics which handle manifold-valued data. We characterize the Holder-Zygmund smooth-
ness of a function between manifolds in terms of the coefficient decay w.r.t. this multiscale
transform.
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1. INTRODUCTION

Linear subdivision schemes and multiscale transforms derived from subdivision are, for
example, used in computer graphics and geometric modeling [29] and also in the numerical
solution of PDEs [11, 10]. In recent years, nonlinear subdivision schemes and corresponding
multiscale transforms have gained a lot of interest. To get an impression of the diversity
of this field the reader is referred to [9, 22, 23, 26| and the references therein. In this
article we stick to the nonlinear geometric setting: Geometric subdivision and geometric
multiscale transforms handle data in nonlinear geometries such as Lie groups, symmetric
spaces, or Riemannian manifolds. Examples are the Euclidean motion group, hyperbolic
space, GGrassmannians or the space of positive definite matrices.

In [4], D. Donoho analyzes linear interpolatory wavelet transforms. In particular he
characterizes smoothness properties of a function by decay properties of the so-called de-
tail coefficients which are derived from the function via the transformation. Interpolatory
transforms can also be defined in a reasonable manner in the setting of geometric subdivi-
sion [22]. In [7], Grohs and Wallner show an analogue of Donoho’s result for the class of
Holder-Zygmund functions in the geometric setting. More precisely, they consider a con-
tinuous function f defined on R™ with values in a manifold M. This function is sampled on
the grid 27¢Z" to obtain a grid function f;. A geometric subdivision scheme 7T is applied
to f; and a (generalized) difference f;;1 © T'f; between this prediction T f; and the (finer)
sample fi11 = f|a—i—170 gives the i-th level detail coefficients d;. The function f is a Holder-
Zygmund function of order «, if and only if the detail coefficients d; decay with O(27%) as
1 — 00.

In this article we treat manifold-valued functions defined on a two-dimensional manifold.
We consider a multiscale transform where both the choice of sample points and the pre-
diction operator are based on nonlinear geometric subdivision. As closed 2-manifolds with
non-zero Euler characteristic cannot be covered with regular quad meshes or triangular
meshes, we must be able to process irregular combinatorics.

The paper is organized as follows. We start out by gathering the necessary information on
linear and geometric subdivision (with emphasis on the situation near irregular vertices).
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Then we define an interpolatory multiscale transform. Afterwards we recall results for
geometric nonlinear subdivision near irregular (or, synonymously, extraordinary) vertices.
Then we have a look at interpolatory wavelet transforms on regular grids.

The rest of the paper it devoted to the characterization of Holder-Zygmund functions
fetween manifolds in terms of the detail coefficient decay, in particular near irregular points.
The main result of the paper is Theorem 2.3. Tts formulation is somewhat involved which is
due to the fact that the subdominant eigenvalue of the subdivision matrix enters the scene
when formulating the decay condition of the detail coefficients d; = f;,1 © T f;. However,
for certain schemes like the modified butterfly scheme |5, 31| the statement simplifies. We
have the following qualitative statement:

Corollary (Theorem 2.3 for the Butterfly scheme). Let M be a smooth manifold and
let N be a closed surface. For a continuous function f : N — M and any positive -,
which is smaller than the smoothness of the butterfly scheme on reqular meshes we have the
equivalence

feLip(y) ifand only if ||dillec < C277.

1.1. Linear and Geometric Subdivision Schemes. We consider meshes of the form
(K,p), where K = (V, E, F) represents the abstract combinatorics and p : V. — M is a
vertex based positioning function. A linear subdivision scheme S maps a given input mesh
(Ko, po) to a (finer) output mesh (K7, p;) by acting as a linear operator on the linear space
of positioning functions. This works only if M is a vector space. S counsists of a topological
refinement rule generating the new combinatorics K; from Ky, and a geometric refinement
rule generating the new positioning function p;. In order not to introduce additional nota-
tion we consider primal triangular and primal quadrilateral topological rules. We assume
that the linear scheme is affinely invariant: This means that the position of a new vertex
p1(w) is computed as an affine average of old positions as follows:

Pr(w) =3 apupo(v) = 2(w) + 3 auulpo(v) - x(w)), (1)

where > ., = 1 and z(w) is some arbitrary point. The second equality is a consequence
of the affine invariance of S. The point x(w) is called base point and becomes only important
in the nonlinear setting. We assume that «,,, 7# 0 only if v is in a neighborhood of w of
a certain globally fixed size. Furthermore, the averaging rules shall only depend on the
combinatorics of a mesh neighborhood of w of globally fixed size. This is the same setting
as is used in [28]. A subdivison scheme S is interpolatory if V; C Vii; and old vertex
positions are not changed during the subdivision process. In that case subdivision adds
new vertices to the existing ones.

Starting with the linear rule (1.1) as a template, we explain how to construct a scheme
which works in a manifold. We retain the topological refinement rule and modify the geo-
metric rule so as to work in a manifold. We begin with a subdivision scheme for Riemannian
manifolds.

Intrinsic mean subdivision: Observe that in Euclidean space the weighted center of mass
p1(w) in (1.1) is the minimizer of a quadratic function:

p1(w) = argmin, Zv uwlpo(v) — gll3-



By replacing the Euclidean distance by the Riemannian distance, we obtain the modified
rule

p1(w) = argmin, Zv Q. dist(po(v), g)* (1.2)

which applies to data in a Riemannian manifold. Existence and uniqueness of p;(w) are
guaranteed if the distance between contributing old vertex positions py(v) is small enough.
The precise bounds depend on the sectional curvature of the Riemannian manifold under
consideration [12|. This minimizer is called (weighted) Riemannian center of mass or intrin-
sic mean. Using the rule (1.2) naturally preserves the symmetries present in the coefficients
ay,- We have the following nice property:

ZU Qo expgll(w) (po(v)) = 0. (1.3)
Here exp is the Riemannian exponential mapping. (1.3) implies
pr(w) = expy,uy (D v expi, (po(v)). (1.4)

If the old vertex positions py(v) sit in a small enough Riemannian ball, the balance condition
(1.3) even characterizes the center of mass (1.2). This property could also serve as a
definition if no distance is available, like in a Lie group.

Log-exp subdivision: By replacing p;(w) in the right hand side of (1.4) by some base
point z(w) we get the rule

p1(w) = exp, (ZU Qyaw exp;(lw) (po(v))), (1.5)

which is a direct analogue of (1.1) as shall be explained in more detail below. For our
purposes the choice of base points is rather arbitrary: x(w) should just be chosen to lie in a
neighborhood (of globally fixed size) of w. Subdivison using the rule (1.5) is called log-ezp
subdivision [22].

Note that by (1.4) intrinsic mean subdivision is an instance of log-exp subdivision with
a very special choice of base points, namely the mean itself. Comparing (1.5) with (1.1),
we see that the operation ‘point + vector’ is replaced by the exponential mapping and that
the operation ‘point — point’ is replaced by the inverse of exp. For p,q in a Riemannian
manifold and a tangent vector v, we let

p@®v=exp,(v) and ¢Op=exp, (q).

Then (1.5) arises from (1.1) by replacing + and — by @ and ©, respectively.

Starting from this interpretation we can take the following viewpoint for constructing
geometric analogues of subdivision schemes of which (1.2) and (1.5) are examples. A geo-
metric analogue T' of the linear scheme S retains the topological rule. The geometric rule
is adapted to work in nonlinear geometries by replacing vector space operations by suitable
substitutes. Various such constructions for different geometries, including Lie groups and
symmetric spaces, have been discussed in detail, see e.g. [22, 23, 24]. It is common to
virtually all geometric schemes that in general the functions used in their construction are
not globally defined, but their existence is only guaranteed locally. This translates to the
fact that the input data have to be dense enough to ensure that the geometric scheme is
well-defined. This also has been extensively discussed e.g. in [23, 24].

General bundle framework: We briefly recall a general framework set up in [7] which
applies to the examples above. It is assumed that the manifold M is the base space of a
smooth vector bundle 7 : £ — M with a smooth bundle norm (e.g. in a Lie group the



trivial bundle with the Lie algebra as fiber and some canonically extended norm on the
Lie algebra, or the tangent bundle of a Riemannian manifold with the norm induced by
the Riemannian scalar product). The substitutes of addition and subtraction are given by
an operation @ : F — M, which is defined in a neighborhood of the zero section of the
bundle, and an operation & : M x M — E, which is defined near the diagonal. (E.g. the
Lie group exponential or the Riemannian exponential and their inverses.) Furthermore, the
consistency conditions y &z € 71 ({z}) and z ® (y © z) = y have to be fulfilled. Then the
geometric analogue of (1.1) w.r.t. this bundle is given by

pi(w) = 2(w) & au(po(v) & z(w)). (1.6)

Because of (1.4), intrinsic mean subdivision can be interpreted as a log-exp analogue with
a special choice of base points and thus fits into this framework.

1.2. Definition of a Multiscale Transformation for Geometric Data. In the follow-
ing let NV be a two-dimensional smooth domain manifold, and let M be a smooth target
manifold of arbitrary dimension. We explain a way of sampling continuous functions from
N to M: Consider a mesh (K, pg) which covers N. We use an interpolatory subdivision
scheme T", which processes data in N and which is analogous to a linear scheme S. By
applying 7", we get meshes (K1, p1), (K2, p2), . ... By construction, these meshes have sub-
division connectivity. The (realized) vertex sets X; = p;(V;) in N are nested.

We assume that never two (realized) vertices p;(v) and p;(w) coincide, i.e., we assume
that p; is injective.Sufficient conditions for injectivity are given in Section 2.1.

We propose the following discrete interpolatory multiscale transform: We point-sample
a continuous function f: N — M on X; and let

fi= flx;
So f; is an M-valued fuction defined in the discrete subset X; C N.
To define a prediction operator T we use another interpolatory analogue 7" of S which
this time works in M. T" is applied to the mesh (K;, f o p;) whose realized vertex set is
fi(X;). The result is a mesh (K41, gi+1) where g;11 has values in M. By our assumption on
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the injectivity of p;y1, the function g, o p;rll : Xix1 — M is well defined. We define the
prediction operator T by

Tfi = git10 P;rly
Using the geometric operation & pointwise, detail coefficients are defined by
di=fir1©Tf;.
Our multiscale transform is now defined by
R:f— (fo,do,dy...). (1.7)



Note that the well-definedness of the transform depends on the well-definedness of the
subdivision operators 17" and 7", which in general can only be guaranteed for dense enough
input data. This translates to the fact that we cannot arbitrarily choose the coarsest level
for sampling (as in the linear case), but there is a bound on the maximal ‘zoom out’. It
turns out, however, that the guaranteed theoretical bounds are very pessimistic in contrast
to what can be observed in practice.

In applications, we have the following finite version of the transform. It reads

Rn : fn — (fo,do, C >dn—1)' (18)

A special case occurs if M is a vector space and 7" is a linear scheme. Then the multiscale
transform is linear.

On the other hand, if N = R? and the initial covering of N is given by the Z? lattice,
choosing T as an interpolatory linear scheme which reproduces linear functions yields the
multiscale transform defined in [22].

1.3. Combinatorial Setup. The analysis of subdivision schemes w.r.t. local properties
such as smoothness or convergence (on compact sets) splits into two parts: The first one
is to consider regular meshes and analyze the properties of the scheme for those meshes.
Since subdivision does not introduce additional irregular vertices as subdivision progresses,
an irregular vertex gets surrounded by an arbitrary large regular mesh with the irregular
vertex as its only singularity. The assumed locality of the scheme guarantees that away
from an irregular vertex one only has to deal with a regular mesh, and near an irregular
vertex one can deal with an unbounded mesh with only one central singularity. The second
part is to analyze the latter situation.

A regular mesh is typically identified with a function on the domain V; = Z2, where
7?2 is naturally embedded into the domain D = R2. Here the combinatorics is understood
implicitly. A k-regular mesh (one central irregular vertex of valence k) is typically identified
with a function on a discrete subset of the following domain D : D is obtained by cyclically
gluing k copies of a sector  in the plane with opening angle 90° in the quad case (or 60°
in triangular case), i.e.,

D=0 x Zk,

where Zj are the integers modulo k. The gluing is done as follows: In each sector we have
polar coordinates (z,¢) where 0 < ¢ < 90° (60°, resp.). The points (z,90°) of the first
sector and the points (z,0°) of the second sector are identified, and so on, where the points
(x,90°) in the k-th sector and (z,0°) in the first sector are also identified. In the triangular
case, (x,90°) is replaced by (z,60°). We refer to Figure 2 for a visualization. The domain
D is an abstract space which turns into a metric space by defining the distance of points by
the length of the shortest path which connects them, with the metric in the single sectors
being that of R2.

We identify a k-regular mesh with a function on the discrete subset Vj of the domain D
which we obtain as follows (see Figure 2): If the scheme is quad-based, we let ¥ be the
unit square in €. If the scheme is triangle-based, ¥ stands for the equilateral triangle of
length one in 2. We consider the tiling of 2 with proto-tile . The corners of these tiles
constitute the restriction of V) to 2. Forming the union over all copies of €2, we obtain
Vh. So a k-regular mesh can be seen as function on Vj, and iterated subdivision produces
functions on V;, Vs, ..., where V; = 27/V},. Hence, for any 4, a subdivision scheme T induces
an operator T; which maps functions on V; to functions on V. We use the notation T; ;
which is short for T; - - - T; (If ¢ < j, let T} ; be the identity.).



For analysis purposes, the domain D is partitioned into so-called rings D;,i > —1 (see
again Figure 2): For nonnegative i, we let

D; =n(27'Y\27"!'Y) x Z, and D_; = Q\n% x Z. (1.9)

Here n > 1 is an integer which depends on the subdivision scheme under consideration. It
must be chosen so large that the limit of subdivision on Dy is obtained from its control set
in Vy by means of the ‘regular mesh’ subdivision rules. A typical value is n = 4. For details
we refer to [25]. D’ denotes the union of all copies of n, or in other words D’ is the union
of all rings D; (i > 0) and the central point 0.
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FIGURE 2. Parametrization near an extraordinary vertex of valence 3 in case of
a quad mesh. Left: The domain D is obtained by gluing three quadrants together.
The first three rings Do, D1 and Do are visualized. Right: The set Vy of vertices
contained in D is visualized for parameter n = 4 as needed for Kobbelt’s inter-
polatory 4-point scheme. The thick line bounds the level 0 control set of the ring
Dy.

1.4. Rigorous Analysis Setup and Results for Geometric Subdivision. One way
of analyzing local properties of a geometric scheme 7" is to go to charts and then, in these
charts, to compare it to the linear scheme S it is derived from. So let us first consider
the case where data is in M C R?. One can think of M as the image under a chart. We
quantify the phrase ‘dense’ which often occurs in our theorems: We define the class Py s
(M C R% 6 > 0) to be meshes whose vertices sit in M and whose diameter of faces is
bounded by 4. To compare schemes T" and S we say that S and T are in local proximity
w.r.t. Py, if, for all input data (Ko, po) € Pus, the positioning functions p? and p7 fulfill
7 (w) = pi (w))llge < C sup [po(v1) = polva)|1?, (1.10)

v1,v2 Esupp(w
where the support ‘supp(w)’ of the stencil of S at w are those old vertices which contribute
to p7(w). Here C is a constant independent of input py and w. In the general case that M
is a manifold with local coordinate charts ¢;, definition (1.10) is applied to the coordinate

representation of T, i.e., T is replaced by ¢; o T o ¢~ L.
The proof of a local property, like smoothness of T', runs as follows: First, one has to show
that the coordinate representation of 7" and the linear scheme S it is derived from fulfill



the proximity condition. The second part is to prove that proximity allows us to transfer
the desired property from the linear scheme S to T. For the second part, the proximity
condition is the only assumtion on 7', it need not be a geometric analogue.

We gather information on convergence and smoothness: We say that a subdivision scheme
T converges for reqular/k-regular meshes in Py s, if for bounded input py € Py s, iterated
subdivision is defined and there is a continuous function f on D such ||f|V; —T; opo|lcc — 0
as n — oo. The function f is called the limit function. We write f = T, ;p; for data
pj = Tj-1,0p0-

It has been pointed out in [25] that a large class of geometric schemes meet proximity
conditions in the case of irregular combinatorics. In the same paper we prove that the
limits of those geometric analogues converge and are C'. Indeed, we show that if a scheme
T is in proximity with a linear scheme S, then T produces C! limits, provided S meets the
following conditions:

(1) On regular meshes, the scheme S is stable in the sense that the operator assigning
the limit function to data is a lower bounded operator w.r.t. from the space of
bounded data to the space of bounded continuous functions, both equipped with
the sup-norm. (This condition is automatically fulfilled if S is interpolatory.) S
produces C! limits on regular combinatorics.

(2) There is a matrix A (here called the subdivision matriz) that maps data on an
n-ring around the extraordinary vertex of a k-regular mesh to the corresponding
n-ring of the subdivided mesh. This n-ring is large enough to control the limit
function on Dq (see Figure 2).

(3) For any valence k, the subdivision matrix A has the single dominant eigenvalue 1
and subdominant eigenvalue A € |0, 1] whose algebraic and geometric multiplicity
is 2. The characteristic map Y, defined below, is regular and injective.

The characteristic map |20, 19, 28| is the limit function of subdivision with S on a k-
regular mesh for the following two-dimensional input: The first components consist of one
subdominant eigenvector and the second component consists of another linearly indepen-
dent subdominant eigenvector. In this paper we always assume that S is interpolatory, and
that S fulfills the above requirements.

Near extraordinary vertices the smoothness is measured w.r.t. characteristic parametriza-
tion, i.e., Thoopo © X ' is considered. There is also an interpretation as smoothness of a
mapping from a certain differentiable manifold ). @) is obtained by imposing a smoothness
structure on the mesh by considering it as a topological space in the cannonical way and
using the characteristic maps as charts (those are defined in each 1-ring N, neighborhood
of a vertex v):

Yo: N, CQ — R?

. @ is as smooth as the limits of S on the regular mesh. The smoothness of a scheme is
the smoothness of limit functions w.r.t. this differentiable structure. For details, we refer
to [1].

1.5. Linear and Geometric Interpolatory Wavelets. We briefly summarize the results
obtained for both linear and geometric interpolatory wavelet transforms for functions on
R™. Here a continuous function f : R" — M (or R) is point-sampled: We let f; = f|o-izn.
Detail coefficients are computed as d; = f; © T f;_1 where T is a geometric scheme. Then
the transform reads f — (fo,do,dy,...). The corresponding linear transform is obtained by
replacing T" by a linear scheme S, and & by —.



In this context smoothness of a function is measured by its membership in the Holder-
Zygmund class Lip, . For o < 2, a continuous bounded function f : R" — R belongs to
Lip,, if the second differences A? f = f(x + h) — 2f(z) + f(z — h) obey the inequality
|AZ flle < Ch® for some C' > 0 and all h € R™. For a > 2, write o = k + 8 with a positive
integer k and 0 < 8 < 2. Then f belongs to Lip, if all k-th order parial derivatives D" f
are contained in Lipg, where p is a multi-index of degree k.

The following theorem is part of the results of [4] and the result of [7]:

Theorem 1.1. Let S be a linear interpolatory subdivision scheme on the reqular mesh
which produces Lip,, limits, and assume that f is a continuous function on R with image
contained in a compact subset.

Then, for v < «, f € Lip,, if and only if the coefficients d; w.r.l. the linear scheme decay
as O(277), i.e., there is C' > 0 such that 27'||d;||.c < C' for all i.

Assume furthermore that T is a geometric analogue of S, and that fo is dense enough
such that the geometric version of the transform is defined. Then the detail coefficients
w.r.t. T also decay as O(277%) if and only if [ € Lip,, .

2. ANALYSIS OF THE TRANSFORMATION

2.1. Results and Examples. In order not to introduce additional technical problems, we
formulate our results for the case when N is compact. However, considering compact sets
N and using a local definition of Holder-Zygmund functions seems a straightforward way
to generalize the results to non-compact N.

Our main theorem is Theorem 2.3. Its formulation needs the following notions: the
smoothness index of a linear subdivision scheme, Holder-Zygmund functions between man-
ifolds, a certain non-degeneracy property referring to a mesh covering a manifold, and the
quantities ||d;||; (¢ € Ny) which encode the decay of the coefficients under the transforma-
tion (1.7). We define these objects first and then state the theorem.

Non-degeneracy Property of a Covering Mesh. Consider the initial mesh covering the man-
ifold NV in Section 1.2. We have assumed in Section 1.2 that for both the initial mesh
and its subdivided meshes no two abstract vertices coincide in their realization in N. For
analysis purposes, we consider the mapping x from the manifold @) (defined at the end
of Section 1.4) to N, which is given as the limit of subdivision. We request the following
non-degeneracy property:

k: @Q — N is regular and injective. (2.1)

Obviously, this property guarantees that no vertices of the initial mesh or its subdivided
meshes coincide in N. Furthermore, it guarantees that « is onto, and thus invertible. This
follows e.g. from degree theory [14]*

IFor the reader’s convenience we give the following short direct argument: Consider a curve 7 : [0,1] = N
connecting a point = v(0) in the image x(Q) and an arbitrary point y = (1) in N. Consider the maximal
parameter tq such that for all smaller parameters ¢ < to the curve ¥([0,¢]) stays in x(Q). The compactness
of N implies that v([0,t0]) C x(Q). So there is p € Q with x(p) = v(t9) and & is a local diffeomorphism.
Now, if ty were not 1, the inverse function theorem and the continuity of v would guarantee that there is
a neighborhood U of k(p) C x(N) and € > 0 such that v([to — &,t9 + €]) C U. This is a contradiction and
therefore k is onto.



If N has non-zero Euler characteristic, we can weaken (2.1) by dropping the injectivity
assumption which then is fulfilled automatically. Again, this a consequence of degree theory
[14]2.

Corollary 2.14 in [25] yields a way to infer the regularity of x from properties of intial
data po using the regularity of the according limit of S (if py does not satisfy this condition,
there is still the chance that py, p, ... do).

Definition of the decay measure ||d;||; . In contrast to the very simple decay conditions in
Theorem 1.1 we have somewhat more involved, but still simple conditions near extraordi-
nary vertices. To formulate these conditions we need the following notation:

The control set ctrl’(U) of U C D on subdivision level 4 consist of those vertices in the
i-th mesh which influence the limit function on U in the sense that a change of data on
ctrl’(U) changes the limit function on U. A more detailed definition is given in [28].

For fixed 4, we split the domain D into the rings D; (0 < j < ¢) and the inner area
D\(Dy U ...UD;_4). For their i-th level control sets we use the notation

V= ctrl'(D;), J <4,
Vi = ctrl’(D\(Do U ... U D;_1)). (2.2)

The corresponding subsets of X; (defined at the beginning of Section 1.2) are denoted by
X/ = pi(V7). We take the difference d;_; = f; © T'f;_; and componentwise measure its size
with the bundle norm. Then we define

Idiliy = max;(A7277)[53] 5 [l where s;(x) = [|di(2)]. (2.3)

Here A is the subdominant eigenvalue of the subdivision matrix A. It turns out that this is
the appropriate quantity to measure the detail coefficient decay near extraordinary vertices
with.

Note that our definition is essentially a weighted sup-norm, where the weights depend on
the ‘distance’ to an extraordinary vertex.?

The definition of || - ||;, naturally extends to an arbitrary mesh and the corresponding
subdivided meshes: Near extraordinary vertices, we locally use the above definition and
obtain a global definition by ‘gluing’. Therefore, we do not introduce complicated notation
for that situation.

Smoothness Index of a Linear Subdivision Scheme. We assume that S fulfills the require-
ments of Section 1.4. Let v be the smoothness index of S on regular meshes, i.e., the
maximal number such that S produces Lip, limits for all v < v. Now we consider the
subdivision matrix A for a valence k vertex. We order the eigenvalues according to their

2As above, we give a short argument for the reader’s convenience: By the regularity of x and the
compactness of @, it follows that k is a smooth finite covering. Then the Euler characteristics of the
covering space ( must be a multiple of that of V. But this is a contradiction to the fact that the manifolds
N and @ are homeomorphic.

3To make this precise, for the position of a vertex z near an extraordinary vertex in N, we find an
according ring D;. (If it lies on the boundary between two rings, take the minimal index.). If we use the
weight A=72¢=J for j-th level data (j > i) on = we end up with a weighted sup-norm for the j-th level
‘sequences’ (For inner vertices x which lie in no ring or a ring with j < i use the weight A=7). Then if we
componentwise apply the exponents v, we end up with an equivalent description of the above situation.
However, the above definition is more suitable for the proofs later on.



modulus by 1, A\, A\, us, g, - ... Then we let v/ = min(log, |ps|, 2) (subdivision schemes with
log, |ps| > 2 are not desirable anyway [18]). We call

w = min(v, ') (2.4)

the smoothness index of S near an extraordinary vertex of valence k. For a general mesh,
take the minimum of the smoothness indices of all extraordinary vertices.

On the Definition of Hélder-Zygmund Classes for Functions between Manifolds. Here we
first follow Triebel [21] to define Holder-Zygmund functions from N to R. We equip N with
an auxiliary Riemannian structure. We consider finitely many exponential charts exp,, !
(whose images are balls of the same radius r) covering N and a subordinate C* partition
of unity {p;}. We say a continuous function f : N — R belongs to the Hdlder-Zygmund
class Lip, (N, R) if (f¢;) o exp,, is a Lip(a)-function on R?, if we consider it extended by 0
outside the ball of radius r.

Note that this definition does not depend on the chosen Riemannian structure. It also
does not depend on the chosen centers of the balls, or on the radius r, or the partition of
unity [21]. So the imposed Riemannian structure is only a tool for defining the Hélder-
Zygmund Classes, and does not prejudice the subdivision scheme we are going to employ:
If N is, for example, a Lie group we can still use a Lie group scheme.

We are going to define the class Lip, (N, M) where both N and M are smooth manifolds
and N is compact. We equip both N and M with an auxiliary Riemannian structure.

Definition 2.1. Suppose that finitely many open geodesic balls B(z;, ) cover N such that
each f(B(x;,r)) is contained in one of the finitely many balls B(y;, R), where the balls
B(y;, R) cover im f. Assume that the partition of unity {p;} is subordinate to the balls
B(z;,r). We define the class of Hélder-Zygmund functions f: N — M by

fE€Lip,(N,M) <= f; €Lip (R™R"),
where f; is obtained from (gip;) o exp,. : B(0,7) — R" by extending with 0 outside the ball,
and g; = eX]Dy_j1 of|Basr)-

Note that in the above definition, the main purpose of introducing the Riemannian struc-
ture is to obtain nice charts. Concerning well-definedness we have the following statement,
whose proof is given later on.

Proposition 2.2. The definition of Lipw(N, M) does not depend on the imposed Riemann-
tan structures, the particular choice of balls, or the partition of unity.

We formulate our main result:

Theorem 2.3. Let S be an interpolatory linear scheme as in Section 1.4 with smoothness
index w > 1 on the mesh combinatorics K. Assume furthermore that the two schemes T’
and T" (acting in N and M, resp.,) both fulfill the local prozimity conditions (1.10) w.r.t. S.
Assume that the initial mesh covering N needed to define the multiscale transform (1.7) has
the non-degeneracy property (2.1). Then smoothness of a continuous function f: N — M
s related to the decay of detail coefficients d; w.r.t. this multiscale transform as follows:

feLip, (N, M) ifand only if  sup;ey, [|dilliy < C (2.5)
for 0 <y <w. Here || - ||;~ is defined by (2.3).
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In Section 1.2 we already encountered the fact that nonlinear subdivision schemes are
in general only defined for dense enough input. By choosing a high enough index 7y, the
samples of f on all levels X; with ¢ > iy are dense enough such that the multiscale transform
is well defined if we start on level i instead of level 0. Then the statement of the theorem
holds if we choose the 7p-th level mesh as initial mesh. As the statement is an asymptotic
one in 7, the initial level 7y does not matter anyway.

We want to point out that by considering N as a smooth (meaning C°°) manifold,
Theorem 2.3 does not apply to the case when N itself is a subdivision surface in R3. The
central technical reason for that is our use of geodesic balls in the definition of the Holder-
Zygmund classes. This is done to obtain ‘nice’ chart neighborhoods. However, a subdivision
surface already brings nice chart neighborhoods. Although we omit this case in this paper
to avoid further technical complications, we strongly conjecture that the above theorem is
also true when N is a subdivision surface.

Modifications of our proofs would also work for C*! schemes with w = 1. However, this
would produce an additional case in most situations which we want to omit. Furthermore,
we want to point out that we do not know how to prove the above theorem if the scheme
is not C*, or w < 1.

For the geometric situation we have the following result:

Corollary 2.4. If T" and T" are geometric (bundle) analogues of a linear scheme S which
operate in N and M, respectively, then (2.5) is valid in this geometric setting.

Linear schemes which meet our requirements are the modified butterfly scheme and Kob-
belt’s interpolatory quad scheme [13]. The butterfly scheme was proposed by Dyn et al.[5].
It was modified by Zorin [31] to produce smooth limits near extraordinary vertices. An
analysis of both schemes can be found in [27].

As a consequence of Corollary 2.4, the Riemannian analogues (1.2) and (1.5) of the
modified butterfly scheme and of Kobbelt’s interpolatory quad scheme fulfill (2.5). Other
analogues meeting the requirements of the corollary are the projection analogue and the
geodesic analogue analyzed in [23].

The exact value of the smoothness index w defined by (2.4) depends on the valences of
the vertices in the combinatorics K. Numerical evaluation in dependence of the valence of
the vertices for Kobbelt’s scheme can be found in [27].

The modified butterfly scheme has some properties which are very nice for our purposes:

Corollary 2.5. Let T" and T" be geometric (bundle) analogues of the modified butterfly
scheme in N and M, respectively, and assume that the initial mesh which covers N fulfills
(2.1). Then for continuous f : N — M and and any positive v, which is smaller than the
smoothness index of the butterfly scheme on reqular meshes,

f € Lip, (N, M) ifand only if ||dilloc < c27.
Here d; are the coefficients of the multiscale transform (1.7).

The above corollary involves the smoothness index of the butterfly scheme on regular
meshes which is known to lie in the intervall [1.44,2]. The lower bound is given in [§],
and the upper bound is clear since the 4-point scheme does not produce C? limits. Note
that the statement of Corollary 2.5 does not depend on the valences of the vertices in the
combinatorics K, and that the decay conditions are as in the regular mesh case.
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2.2. Proofs. The main part of this section is devoted to the proof of Theorem 2.3. We begin
by providing some information on the invariance properties of Holder-Zygmund functions.
For an open subset U C R” and 0 < o < 1 we define the Hélder classes C1*(U,R?) as
the space of C* functions f : U — R? such that, for the differential of f, ||d,f(z) —d,f| <
Cllz —y||*, for all z,y € U.
We need the following properties of Holder-Zygmund and Hélder classes which mainly
concern invariance under composition and multiplication.

Proposition 2.6. Assume that 0 < v < 2 and that 0 < a < 1 such that a > v — 1.
Consider f € Lip (R",RY). Let U,V be open sets in R", and let g : U — V be a C'
diffeomorphism with g € C%*(U,R%). Furthermore, assume that U',V' are open sets in
R? and that h : U — V' is a C* diffeomorphism with h € CY*(U',V'). Last but not
least, let K C W be a compact set contained in the open set W, and f' : W — RY be a
continuous bounded function which fulfills |AZf(x)|| < ChY for all x € K and ||h|| < ho,
where B(y,2hy) C W for all y € K. Under the assumption that all sets are connected and
contain 0, we have the following statements.

(i) If u € Lip,(R") with suppu C int K, then the product uf’ : R™ — R? (extended by
0 outside ) belongs to Lip, (R",R?).
(i) If L C U is compact, then there is an open neighborhood N of g(L), such that
gt e CH(N,R").
(iti) If f is compactly supported in V, then fog € Lip, (R",R?). Furthermore, || fog||Lip,
< Cllgllcresupp )l fllLip,
(iv) If f has compact support and im f C U’ then ho f € Lipv(R”,Rd).

Proof. Note that for 0 < a < 1 that the Holder spaces CV*(R™) and the Holder-Zygmund
spaces Lip;,,(R™) coincide (which is, in general, no longer true, if we replace R" by an
open set U).

In order to avoid pathologies (arising from the choice of domains), the Holder functions
and the Holder-Zygmund functions in the statements are compactly supported or defined
in a neighbourhood of the open set of interest— not only on the open set itself. This allows
us to use certain results for the R™ case rather than have to deal with problems at the
boundaries of the domain. In particular, certain proofs given for the R™ case which are
based on differences and moduli of continuity (which are quanities of a local nature) carry
over to our setting.

In case v # 1, (i) is a straightforward computation. For v = 1, we can use the represen-
tation [3, Equ. (2.4)] and proceed in a way analogous to the proof of Proposition 3 in [3].
This is justified, since our setup allows to apply [3, Equ. (2.2)].

We come to (ii). The corresponding statement for the R™ case is stated as Theorem 2.1
in [2] and is there attributed to Norton [15]. The argumentation in [2] is a local one, and
choosing N as a set with compact closure in g(U) yields (ii).

For v # 1, statements (iii) and (iv) in the R" case are Lemma 2.2 and Lemma 2.3 of |2].
Again, by the locality of the arguments in the proof of these lemmas and the compactness
of supp f, (iii) holds true as stated.

The R" statement analogous to (iii) for v = 1 is the composition theorem of [16]. Tts
proof which is based on certain moduli of continuity also applies to the situation in (iii).

A similar statement to (iv) in the R" case for v = 1 is Theorem 2 of [3]. The difference
is that only the case d = 1 is stated. However, the moduli » and v employed in [3| can
be generalized to arbitrary dimension d in the obvious way. Then the generalization to

12



arbitrary d of Proposition 4 and Theorem 6 in [3] remains valid. An analysis of the proofs
of Proposition 4 and Theorem 6 of [3] shows that they also apply to the situation in (iv)
(every C' function fulfills the condition [3, Equ. (1.1)]). O

With the help of Proposition 2.6 we are able to show Proposition 2.2.

Proof of Proposition 2.2. 1t is sufficient to show the result for connected N. We assume that
the conditions of Definition 2.1 are fulfilled for a function f and geodesic balls B(x;,r) and
B(y;, R), respectively. We consider another such set of balls B'(zy,r’) and B'(v;, R') with
respect to different Riemannian metrics on N and M, respectively. Consider the partition
of unity {¢;} and the functions f; as in Definition 2.1, and an analogous partition of unity
{¢}.} and the corresponding functions f; corresponding to the different choice of balls. We
have to show that, for all &, f; € Lip, (R™,R").

To that end, we choose some small enough R” and finitely many balls B’(g;, R”) which
cover f(N) such that, for each ¢, there is j and [ with B'(¢;, R") C B(y;, R) and B'(¢;, R") C
B'(u;, R'). Then we choose some small enough 7" and finitely many balls B’(ps, ") which
cover N such that, for each s, there is ¢ and k with B'(ps,r”) C B(z;,r) and B'(p,,r") C
B'(z, "), and such that there is t with f(B'(ps, ")) C B'(q:, R"). We let {¢”} be a partition
of unity subordinate to the balls B(ps, ).

We construct the functions f” following Definition 2.1, using the balls B'(ps, "), B'(q;, R")
and the partition of unity {}}. Proposition 2.6 yields f! € Lip, (R™,R") for all s.

Consider now f;. Modulo a change of exponential charts, we can write f; = > 1, f! with
smooth functions ¢, with compact support. By Proposition 2.6, this change of exponential
charts leaves the Lip,, property invariant. Again by Proposition 2.6, multiplication with 1),
leaves the Lip, property invariant. Thus f; € Lip, (R™, R"). O

We introduce some notation we need for the proof of the following theorem. For a function
pn on V,, for some k-regular mesh and a subset B of V,,, we define

Dp(pn) = sup{||pn(v) — po(w)]| : v and w are neighbors in B}.

We drop the index B, if B = V,,. Dp gives an upper bound on the coarseness of the
corresponding mesh on B.

Theorem 2.10 in [25] is only concerned with C' smoothness. We need the following
generalization of that theorem which applies to Holder functions.

Theorem 2.7. Let S be a linear subdivision scheme which meets the requirements of Sec-
tion 1.4, and let T' be in proximity with S. Let w > 1 be the smoothness index of S for a
k-reqular mesh. If T converges for input py (which is guaranteed if py is dense enough in
the sense that D(pg) is small) then this limit is in CH*~! whenever 1 < a < w.

Proof. We first consider linear subdivision and then use the results for that case to obtain
the corresponding statement for the nonlinear case.

We consider the limit function h = S opo for input py and its restriction h,, = h|p,, to
the ring D,,. As before, A\ denotes the subdominant eigenvalue of the subdivision matrix
A and p denotes the modulus of the sub-subdominant eigenvalue(s). We are ordering the
eigenvalues of A by their modulus, 1 > A = X > |us| > ... > || > .... Then hy can
be represented as hg = Y Z?:o Biel with {e/} being the eigen-rings of the subdivision
scheme [18] and (37 being coefficients. Here the index r corresponds to the eigenvalues and
the index j corresponds to the Jordan block of the corresponding eigenvalue. The limit
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function on the m-th ring has the nice representation

P = Bo + 51)\m€1(2m') + B2 A" es(2M)
l'r
+Y > (P)w Z iei=l(20) = b/ 4+ R (2.6)
r =0

See Chapter 4.6 of [18] for details.

Consider now the function h,, o , 1.e., we look at the characteristic parametrization
of the limit. By [18], the differential of h!, as defined by (2.6) fulfills d(h! o x™!) =
O(A"™(us)™) uniformly on D,, as m — oo for every s > 1.

Assume that « is a real number with 1 < a < w. Since limits on regular meshes are
Clo~t for all points x,y in, say, three consecutive rings x(D,,_1) U X(Dyn) U X(Dypy1) the
Holder condition

-1

lds(hox™) = dy(hox™H)|| < Clla —y[|*~ (2.7)

is fulfilled for some constant C' > 0 which is independent of the particular m.

We consider the situation near the central point 0. We write b’ for the function defined
on each D,, by h!, (m € N) and by [ in 0 (h!, is defined in (2.6)). Analogously, we define
R with the difference that A”(0) = 0. Then i/oy ! is an affine-linear function and therefore
dy(h ox ') —d, (W ox ') =0. Hence

ldo(h o x™) = do(h o x ™I/ 1217 = llda(h” 0 x Il ll]|*7

Now, consider z € x(D,,). Two consecutive rings are A-homothetic. So there are k, K > 0
which are independent of z and m such that kA" < |jz|| < KA. Therefore, there are
C1,Cy > 0 such that

lda (B2 o x HI/||z)|*7t < Cyl|da (B o x 1) ||/ A™@=D
< o\ )" ) = (5N

We choose s > 1 such that p = sA*~* < 1. Then s(u/A\*) = (u/N)(sA"~%) = p. This is
because the first factor equals 1 by definition of v. Then, ||d(h,, o x™)||/||z]|* < Cyp™
< (5. This implies that the Holder condition (2.7) holds also in 0.

For points = and y, which lie in two rings, say x(D,) and x(D;), with |r — s| > 2, we
estimate differentials by

ldo(hox™) = dy(hox Il < llds(hox™") = do(hox™ ")l +[ldy(hox™") — do(hox .

By the contraction of the rings, [z — y[|* > emax([|x||*, [|y||*) for some ¢ > 0 which is
independent of = and y as long as |r — s| > 2. This yields a (larger) constant C” such that
(2.7) still holds with C replaced by C’. Altogether, this implies that the limit of linear
subdivision is a C*~! function.

Since we now know that S produces Ct*~! limits for o < w, we can base the proof for
the nonlinear case upon the perturbation arguments used in the proof of Theorem 2.10 of
[25]. We assume a < w. We point out where modifications are necessary. First of all, note
that for a function u on R™ and some h > 0, we have ¢, C' > 0 such that the dilated function
u(h-) can be estimated by ch®||ul|cre-1 < ||u(h:)][cra-1 < Ch%||ul|cra-1. (C is a generic
constant, which can change from line to line from now on.) With this in mind, we can use
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the argumentation of Proposition 2.12 in [25] to obtain that

||(Soo,i+1Ti,op0 - Soo,z‘Ti—l,opo) © X_1|X(Dn)\|cl,a*1
< CET"AYNTE = Si)Ti1.0P0]ctrri+ ()l oo

Invoking this estimate yields a statement analogous to |25, Equ. (210)] for the rings near
the extraordinary vertex:

1 (Soo,i+1T5.0P0 — SooiTi-1,000) © X' x(pw) lcra—1 < C’Y(Zfa)ipcm“(D')(PO)Qa (2.8)
where v := max(27!, \). The C1*~! version of (2.12) in [25] reads

[ (Seo,i+1Ti,0p0 — Soc,iTi—1,0p0) © X71|X(u°° DimU{0}) leramt < CACTD 0o (po)?. (2.9)

m=i

The estimates (2.8) and (2.9) now imply that the limit using 7" is C*~!. This follows with
minor modifications from the proofs of Proposition 2.13 and Theorem 2.10 of [25]. O

The next proposition treats vector space data defined over a 2-manifold. It is a special
case of our main result.

Proposition 2.8. Let the interpolatory scheme T act on the smooth compact 2-manifold N
and assume that it is in proximity to linear interpolatory scheme S. Assume that the initial
mesh (Ko, po) in N fulfills the non-degeneracy property 2.1. Let w be the smoothness index
of S for that mesh. We consider the linear version of the transform (1.7) and a continuous
function f: N — R Then for any v with 0 < v < w we have the characterization

f € Lip (N,RY) if and only if ~ sup;ey, ||dilli < C- (2.10)
Furthermore, || folloo + SUDsen, |dilliy provides an equivalent norm on Lip. (N, R?).

Proof. The proof of this statement takes some time. So we split it into several parts. Part
(1) reduces the statement to a statement involving only one extraordinary vertex. In parts
(2)—(5) we show the reduced statement: Part (2) is the ‘only if’-part in case v # 1. The ‘if’-
part of the statement is treated in part (3). In part (4) we explain why || fo|oc +sUp;cp, ||dilliy
defines an equivalent norm on Lip_ (N, R?) in case v # 1. In Part (5) we show the ‘only
if’-part of the statement and treat the norm equivalence for v = 1.

We need the sets V; and X; which were defined in Section 1.3 and at the beginning of
Section 1.2, respectively. The subsets V/ and X are given by (2.2) and the lines following
(2.2), respectively. We let C' be a generic constant which can change from line to line.

(1) We reduce the statement to a more accessible situation near extraordinary vertices.
To that purpose, consider the neighborhood of an extraordinary vertex € Xy C N and
the corresponding point 0 € V; in the glued domain D. Denote by X; = x(V;) the image of
V; under characteristic parametrization. With the diffeomorphism x of (2.1), y o ™! is a
local diffeomorphism mapping = to 0 € R2. Thus x o k! sends neighbors of x € X; C X,
to neighbors of 0 € X;. For a visualization see Figure 3.

Now choose finitely many small geodesic balls B(y;,r) which cover N, such that each
k1 (B(yj,7)) is completely contained in some characteristic chart neighborhood. Let {¢;}
be C* functions such that each ¢; is supported in B(y;,r) and equal to 1 on B(y;,r —¢),
where € > 0 is so small such that the balls B(y;,r — ¢) still cover N. If f € Lip, (N, R?)
then fi; is compactly supported in B(y;,r) and the extension of its chart representation
with 0 outside the ball is in LipW(R2, R?). Let us denote this extension also by f1);.
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The mapping u; = yor 'o expy_j1 is a diffeomorphism from B(0,r) into R?. Its image
contains the compact set w;(supp f1;). By Theorem 2.7 the inverse uj_l is Cte for all
a < w. Therefore, Proposition 2.6 implies that (f1;) o uj’1 € Lip,(R? R?) (with the usual
O-extension). This means that a Holder-Zygmund function on N transforms to a Hélder-
Zygmund function near 0 in the image of a characteristic chart.

Conversely, if we have a Hdélder-Zygmund function g in the image of a characteristic
chart which is compactly supported in u;(B(0,7)), we use Proposition 2.6 to obtain that
g o u; is Holder-Zygmund on N (with extension by 0). For a Holder-Zygmund function g
defined on (D) which is not necessarily supported in u;(B(0,7)) we can multiply g with
P o u;l to obtain a function that has support in u;(B(0,7)) and apply the above to obtain
a Holder-Zygmund function on N. '

We define the details d; and the control sets X7 analogous to the details d; and the control
sets Xf , only by replacing X; C N by X! C R% Then, locally near an extraordinary vertex,
the details d; of f given on N and the details d; of f ox o x~! are equal.

If a ball B(y;,r) in N does not contain an extraordinary vertex, then we are in the regular
mesh case. But this is a special instance of a 4-regular mesh in case of quad meshes, and a
6-regular mesh in case of triangular meshes which is treated by the general k-regular case.

Summing up, it is enough to show the following reduced statement for the k-regular mesh
for a continuous function f with compact support in a neighborhood of x(D’):

f€Lip,(x(D),R?% ifand only if  supey || fi — Si—1fic1lliy < C. (2.11)

We also show that || fol|oo + Supsen, ||.fi — Si—1fi—1lli,y Provides an equivalent norm on

Lip® (x(D),R?) = {f € Lip, (x(D),R?) : supp f € K} (2.12)

for some fixed but arbitrary neighborhood K of 0. Then the corresponding statement in
the proposition follows from Proposition 2.6(iii).

For the further proof we let d = 1, since the right hand expression in (2.11) is equiv-
alent (lower and upper constants) to the maximum of the corresponding component-wise
expressions.

(2) We show the ‘only if’-part of (2.11) for v # 1. So our assumption is that f €
Lip, (x(D),R). f; denotes the restriction of f to X;. The subdivision scheme S acts on
functions on V; as linear operator S; and thus also on functions on X;. We denote this
operator on functions on X; by S;, too. We abuse notation and also use Sec,i to denote the
operator which maps input on X; to its limit w.r.t. characteristic parametrization.

Consider the restriction of f; to the sets X7 (the index i corresponds to level i and the
index j to the ring j near an irregular vertex). In the course of the proof we have to
estimate the norm of (f; — S;_1fi—1)|gs. We have to distinguish two cases depending on
whether [ :=1¢ — j, i.e., the differce between level and ring index, is small or not.

If we choose [ sufficiently large, say [ > [y, we get that

1(fi = Sicafim)|gglloo < M = Ssci1fimt) o) lloe (2.13)

where we set D7 = D;_; U D; U Dj;y. This is a consequence of S being interpolatory and
the fact that the contol sets X/ on level i of x(D;) are contained in Df.
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For | = i—j < ly, we find r € N such that X7 C X(Dj_,), where Dj := D'\ (DoU...UD;_).
(D’ was defined as the union of all the rings D;, i € N, and 0 in Section 1.3.) Then

1(fi = Sicafid) | gilloo <N = Secimafimt) oy )

Observe that showing

. (2.14)

I(f = Secsim1fi-1) (D)) lloo < CN720=97 and (2.15)
[(f = Socii—1fim1) lx(oplloe < CA" (2.16)

is enough to complete this part of the proof. This is because (2.15) and (2.16) together
imply that (2.15) is valid with D; replaced by D or by Dj, respectively, if we enlarge the
constant C. Then (2.13) and (2.14) imply ||(fi — Si—1fi—1)] 5/l < CN20=97 where C is
independent of ¢ and j. This is the right-hand side of (2.11).2

We show the approximation estimates (2.15) and (2.16). If v > 1, we write f = f(v) +
dpf(- — v) + g(-) with g(x) = O(||z — v||?) for x+ — v by our assumption. The linear
bounded operator which first samples f and then maps the result to the limit of subdivision
reproduces constants and linear functions w.r.t. the characteristic parametrization. So,
for a vertex v € X, 1, we have S 1fi1 = f(v) + dof(- — v) + h(:) for some h with
h(z) = O(||lx — v||?). Then, if v is a point in X; | nearest to =, we obtain

f(x) = Sacic1fi—1(z) = g(x) — h(z) = O(]|]x — v||”) for z — v. (2.17)

If v < 1, the estimate (2.17) is shown in the same way, without using differentials.

In order to estimate ||z—wv|| in (2.17) we introduce the notation (A, B) = sup,¢4 inf,ep||z—
v||. By the definition of Vi, o(Dj, V}¥) = O(2%) and o(D,,V;") = O(2%) as k — oo uni-
formly in r for r < k. Because the charactistic map is a diffeomorphism on each ring Dj
fulfilling the scaling relation x(2:) = \x, we have that o(x(D}), XF) = O(A\*) and that
o(x(D,), XI) = O(X\"2"7%) as k — oo uniformly in r for r < k.

If we apply this to (2.17) for z € D]_,, we get inf cx,  [lz — v] = O(\). Also, for
j>i—1,and x € D;, we obtain that inf ., , ||z —v| = O(A\2"77).

Then plugging ||z —v|| < N2~ into (2.17) and enlarging the constant C yields (2.15)
and (2.16). This completes part (2) of the proof.

(3) We show the ‘if’-part of (2.11). The continuous functions g; = S f; uniformly
convergence to f on x(D) for the following reason: Since S is interpolatory, for a vertex
v € X, nearest to x, we get that

l9:(@) = f(2)]| < [1Secifi(2) = Secifi(w) | + [Lf () — f ()]
< Csup{||f(v) — f(w))]| : v, w neighboring vertices} + || f(x) — f(v)]|,

and the right hand side tends to 0 as 1 — oo.
The right-hand side of (2.11) implies that, for ¢ > 7,

19: = g1l lloo < 1So00lllLfi = Sfi-tl5illoo < C'l|So00|29797A. (2.18)

Here C" is the constant in the decay condition which depends on f. In this part, we continue
to use the symbol C' as a generic constant which can change from term to term, but we
only employ it if it does not depend on f. We use (2.18) to quantify the distance between
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f and the approximants g; on the ring x(D;) :

If = gilxwplle <3, N9k = Gemrl) e
< CllSwoll Y 207N < 002000, (2.19)

We consider the inner domains x(D}) now. Using the right-hand side of (2.11), an estimate
analogous to (2.18) yields [g; — gi—1|ypy) [l < C'C\"7, whenever i < j. Then,

1f = gilx( DY) oo < Zk i1 gk — gr—1lx(D)lloo

< CHSoo,OH(Zk:iH N4 Zk:j+1 90 k)v/\ﬂ)

<C'OA YT max(27 NP < C'OA. (2.20)
We proceed to estimate second differences, beginning on the rings x(D;). By enlarging
the constant C' in (2.19), the statement of (2.19) remains valid for sufficiently small e-
neighborhoods U; of x(D;). We choose the neighborhoods U; of x(D,) in such a way that
each Uj is scaled copy of the neighborhood of Uy with factor jA. Then there is hg > 0
such that for any j, all z € x(D;), and all ¢ with ||¢|| < Mho, the second difference A?f(x)
only depends on f|U;.

We let a be a real number with v < o < w. Consider the modulus of continuity wi(h, f) :=
sup g <n (A2 f)x(pyll, for b < Mhg. We have the estimate

w%(ha f) S h f gn +Z h y Jit1 — g)+w%(h790)
< A[(f = g0)lxwylloo + Z g1 — gillag + (B 90). (2.21)
where || - ||a; == sup, A=Wl (h,-) +| - lyw;)lloo-

With the help of (2.19) and (2.20) we can estimate the first summand on the right-hand
side of (2.21) by [[(f — gn)lxw)) llo < CCTAmRIIT27 mX(R=500,

We consider the sum in (2.21). By the locality of the subdivision scheme S, the limit
function locally is a linear combination of finitely many generating functions. Furthermore,
on a regular mesh, an integer shift of those generating functions is a generating system for
the shifted functions. Near 0 in a k-regular mesh we also have a finite generating system.
Since going to a finer resolution only dilates the generating systems, we get ||gi+1 — gillaj <
C20=92N73% g1 — gilyw,)lleo in case that @ > j. If i < j, we obtain ||gir1 — gillay; <
CA™ i1 — gi\X(U].Upé_)HOO. By combining these estimates, we get

n—1
Zi:O R\ giv1 — Gillaj < Z ha}‘ min{i,j)a gmax(i=3.0) *giv1 — gi|x(Uj)||oo
< 00’ ST pey = min(ii) (a—n) gmax(i=j.0)(a=) ,
_CCZzOh)\ 2 (2.22)

We further discuss this upper bound. We consider n with n > j and set h = 22~"\. Then,

S ! o\ min(i.j) (o) gmax(i—5,0)(a—y) _ Z”‘l \G=min(i.) (@) g (max(i—j,0)+j—n)(a—7)
=0
N G nlzn(av
> A > <C, (2.23)
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where C' is independent of n and j. We plug (2.23) into (2.22) and the result into (2.21).
For h = 27"} and j < n we obtain

hwh(h, f) < 4C'C + CC' + CC, (2.24)

where the constants do not depend on j and n. Since the sequence h,, = 277"\ goes nicely
to 0, it follows that there is hj with 0 < hj, < hg such that, for all j and h with 0 < h < hy),

hwi(h, f) < C'C. (2.25)
We consider the neighborhood of the central point. Instead of D; we consider the central

domain D_;-, and employ the second modulus of continuity &3 (h, f) = supy <y, [|(A7f) ol
for h < Mhg. Analogous to (2.21) we estimate

» » -1 »
wy(h, f) < @3(h, f —g;) + Zz‘:o @y (h, givr — i) + @3(h, o)

i1, :
<AII(f = g)haplioe + D o Pllgi1 = Gillaj + wa(h, g0), (2.26)

where the above definition of [ - ||o,; is modified by replacing U; by Uj. By (2.20), the
first summand on the right-hand side of (2.21) is bounded from above by [|(f — g;)|xv;)llo
< CC'N7. Similar to (2.22) and (2.23), letting h = (cA)?, for some ¢ with 0 < ¢ < 1, which
is small enough to guarantee the definedness of @7,

- i1 @ — i1 ay —io
Y T B gt — gillag < Ch ”Zizo hA™gi1 — gl ll oo

=0
= § T e ity
<CCh Yy T hA .
1

=o'y e < o (2.27)

where the constants are independent of j. Combining these two estimates and plugging
them into (2.26), we get, on the inner domain x (DY),

R ((eNY, f) < C'C, (2.28)

uniformly in j. Firstly, this yields the decay condition ||[AZf(0)|| < C'C||t||” in the central
point. Furthermore, if we consider some z in the j-th ring x(D;), and some y in the i-th
ring with j —i > 2 then (2.28) ensures that || f(z) —2f(*32) + f(y)|| < CC'||z —y||". If the
distance is smaller, then (2.25) applies. In summary, this shows that f € Lip, (x(D),R?).

(4) We explain why || f’, = [l folleo + sup;en, [Ifi — Si—1fi-1]liy is an equivalent norm on
Lipf(x(D),Rd) (defined by (2.12)) for the case that v # 1. By (2) and (3) the subspace
of continuous functions where || - ||/ < oo coincides with Lipg. It is a straightforward
computation that [ - | defines a norm. The constants C' occuring in (3) do not depend on

f (for constants depending on f, we used the symbol C’). This yields that there is C' > 0,
independent of f, such that

1 f ipse < CILFII- (2.29)

Since part (3) includes the case v = 1, (2.29) is also valid for v = 1.

For the converse part, we have to analyze the proof of part (2). In the beginning of part
(2), we reduce the statement of part (2) to (2.15) and (2.16). Examining this reduction we
see that the occuring constants do not depend on f. It remains to analyze the constants
occuring in the proof of (2.15) and (2.16): By careful examination, it turns out that f only
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influences constants via the O()-term in (2.17). This means that we have to look at the
Holder constants of the functions g and h occuring in part (2). By definition, those Holder
constants are bounded by some multiple of the Holder norm of f. Summing up, there is
C > 0, independent of f such that

LI < ClLf[luips (2.30)

in case v # 1. Thus those norms are equivalent for v # 1. The inequality (2.30) for the case
v =1 is shown at the end of part (5).

(5) Tt remains to show the ‘only if’-part of (2.11) for v = 1. To that purpose, we use
interpolation theory. We refer to [17] for a thorough treatment in connection with Holder-
Zygmund classes. It is well known that Lip, is the interpolation space [Lip;_,, Lip; . ]1/2.

This notation means the following: For two Banach spaces X and Y with Y C X, [X, Y],
is the space of all f € X such that Peetre’s K-functional K(f,t) < Ct/, for 0 < t < 1,
where

K(f,t) = infgey |f = gllx + tllglly-

The interpolation space becomes a Banach space with norm || - || = sup, t ?K (-, t).

We proceed in the following way: We assume that f € Lip; C Lip,;__. Then for every
t with 0 < ¢ < 1 there is g, € Lip,,. such that t V2| f — g/||Lipa—o) +t*?gel|Lipare) < C,
where C' does not depend on t.

We let hy = f — g:. We consider the coefficients under the multiscale transform of f,
hy and g, on X!. We denote these coefficients on X; by d(f),d(g;),.... By (4) we have
d(he)lloe < C2070= Ny |1, and [[d(ge) oo < C"2070FIN D gy [[1i5140),

By applying the triangle inequality and letting t'/2 = 20=9 )¢ we get

270N Nd(f)lloe < 27N ld(Re)lloo + 277 A | d(ge)
< C"27 9Ny | Lip(i—e) + C"20 N | gy |l Lip(140)
< max(C, C") (72| f = gilluipa—e) + [l gellLip(a+2))
< 2C" max(C", C") || flLip, - (2.31)
For the last inequality we have used the equivalence of the norm induced by the K-functional
and the norm induced by second differences. (2.31) means that we have the desired decay

of the multiscale coefficients if f € Lip, .
Furthermore, the coefficient based norm |||} from part (4) obeys

1A < Cllfllip, -

The other direction, i.e., || flluip, < C||f||7, was already established in (2.29). Hence || f]|}
is an equivalent norm on Lip, .

O

Having collected all this information we are now able to prove Theorem 2.3.

Proof of Theorem 2.3. This proof is quite long which is the reason why we split it into
several parts. In part (1) we reduce the statement to a statement only involving one
extraordinary vertex. We proceed similar to the proof of Proposition 2.8 which is the reason
for being quite brief in this part. Part (2) is the ‘only if’-part of the reduced statement,
and part (3) is its ‘if’-part (which is actually the hard estimate).
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FIGURE 3. Setup for the proofs of Proposition 2.8 and Theorem 2.3.

We use the notation of the proof of Proposition 2.8. Furthermore, we use the symbol C'
for a generic constant which can change from line to line.

(1) Similar to the proof of Proposition 2.8 we reduce the statement to the situation near
an extraordinary vertex. We show that a certain way of ‘applying charts’ does neither affect
the Holder-Zygmund classes nor the decay of detail coefficients.

We cover f(N) with balls B(z, R), and N with balls B(y;, ) such that each f(B(zx,7))
is completely contained in one of the B(y;,r) and such that the image of each B(z,7)
under ! is completely contained in some characteristic chart neighborhood.

We let ¢); be C* functions supported in B(y;,r) and equal to 1 in B(y;,r — ¢), where
e > 0 is so small that the balls B(y,,r — ¢) still cover N. Then the extension by 0 of
g; = exp ! o(fih;) o exp;j1 is in Lip, (R? R?). Except for applying charts, g; agrees with f
on B(y;,r —¢€).

With the mapping u; = xyox o exp;j1 already defined in part (1) of the proof of Propo-
sition 2.8 we obtain that the 0-extension of g; o uj’l is in Lip, (R?,R?), by Proposition 2.6.

Conversely, assume that we have Holder-Zygmund functions g; (of order 7) such that
each g; is supported in a neighborhood of x(D’), maps to M, and agrees with f o uj’l on
u;j(supp ). Then we restrict g; to u;(B(y;,r)), go to charts, and multiply the result with
o uj_l to obtain a Hélder-Zygmund function g} with support in u;(supp ). Then g} o u;
(extension by 0) is Holder-Zygmund and agrees with f on B(y;,r — ¢). Furthermore, the
coefficients of the multiscale transform for g; around 0 and the transform of f near the
corresponding extraordinary vertex agree.

After going to charts for M, the following statement implies the theorem. For the k-
regular mesh and for a continuous function f with compact support in a neighborhood of
x(D') we have

fe Lipy(x(D),Rd) if and only if  sup;en ||fi — Tici ficilliny < C. (2.32)

There is one more thing to explain here: We let the scheme 7" act in a chart which allows
us to write an ordinary minus sign in (2.32). The right-hand side expression in (2.32),
|| fi — Ti—1fi—1li, which is based on the Euclidean norm, is bounded both from above and
below by constants times ||f; © T;_1 fi_1||;,, which is based on the smooth bundle norm.
This is a consequence of the properties of ©, the smoothness of the bundle norm and the
compactness of the image of f. For details, see [7].

(2) We show the ‘only if’-part of (2.32), assuming f € Lip,(x(D),R?). Equation (2.11)
yields that sup;cy, ||fi — Sic1fic1lliy < €. We consider the sets X/ and observe ||f; —
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Si1fictlgilleo < C20=97)\7 . Since S and T fulfill the proximity condition (1.10),
Ifi = Ticaficalgslloe < Ifi = Sicaficalgilloo + 1(Sica ficr = Tica fit) | 37l
< C2UTINT 4+ CDgs (fin)”. (2.33)

Here we let Xf = Xij, if « > j, and Xf = X! if i < j. Then Dy, 1(fi—1)2 is the dif-
ference of function values of f on neighboring vertices in Xij_l. Since we consider f €
Lip, over the characteristic parametrization, neighboring vertices in X7/, have distance
2—min(z’—j—l,O))\min(j,i—l)‘

If f € Lip,, then f € Lip, 5,., when we choose ¢ such that 0 < & < max(1 —v/2,7/2).
This choice of ¢ guarantees that v/2 + e < 1. The the Lipschitz norm based on first

differences is an equivalent norm on Lip, .. Hence, since f € Lip, .., and all f; are
samples of f,

D)ZLl (fi—l) S 2—min(i—j—l,O)(’y/2+£))\min(j,i—l)('\//Q—i-e)‘ (234)

Plugging (2.34) into (2.33) yields the decay of the multiscale transform w.r.t T which is
required by (2.32).

(3) We consider now the ‘if”-part of (2.32), i.e., we assume a continuous function f having
the decay as stated by (2.32). We again look at the control sets X7. By assumption, the
decay conditions for ¢ > j read:

1(fi = Tima fima) | s | < G277, (2.35)

If i < j, then the right hand side is replaced by CyA\". Here C} is a constant which depends
on the continuous function f, but is neither dependent on the ‘ring-index’ 7 nor on the
detail level 7. Our aim is to show that (2.32) and the corresponding statement for i < j
imply that for ¢ > 7,

I(fi = Simafimn) sl < C27 797, (2.36)

and for 7 < j, the same with the right hand side replaced by C’\?. Here the constant
C" should not depend on i or j. Once (2.36) is proved we apply (2.11), and obtain that
f € Lip, as desired.

It remains to show (2.36) which will take some time. We start by invoking the proximity
and decay conditions to obtain the following estimate for ¢ > j :

[(fivr = Sifi)lzs I < W (fivn = Tifi) g5 I+ I(Tifi = Sifi)l 20l
< Cp27 N 4 CL D (). (2.37)

Here C), is the constant from the proximity condition. This estimate is valid for dense
enough input, which we can always achieve by going to a finer sampling level since f is
continuous. Analogously, if ¢ < j,

[(rer = Seflss, Il < 205N + Dy (1) (2.38)

From (2.37) and (2.38) we conclude (2.36) if we know the estimates
Dyi(fi) < C27 02N/ (i > j), (2.39)
Di(fi) < ON2 (i <J), (2.40)
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for some constant C' > 0. We are thus left with proving (2.39) and (2.40). We write, for
1> 7 > g,
fi=(fi = Sicific) + ...+ (Sicijm fivr — Sicaj fi) + (Sicajfi — Sicij-1fi—1)
+ oo (Sic1ig41 fig+1 — Si—140fo) + Si—1.40 fio- (2.41)

By Lemma 2.11 in [25], there is a constant Cg such that for any subdivision level k£ and
input pr on level k,

D (Sicrape) < Cs27 M Dygy (p) (i > k> j),
Di(Sim1.pk) < 032_(i_j)>\j_k2?)~(£ (k) (i>j>k),
D (Si-1.kpk) < Cs)\i_kpj(i §29) (i <j<k). (2.42)

Furthermore,

D)}i(fk — Sk—1fi-1) < D)}i(fk — Tt frm1) + ’D)”(IJC'(Tk—lfk—l — Sk-1fr-1)
< 2/[(fe = Terfe-1) | 57 1 + 201 (The-1 fem1 = Se1fr1) | 1

We use this and (2.42) to estimate the single terms in the telescoping sum (2.41). For the
control sets X7, where i > j > iy, we get

Df(g(fz) < QH(fz - ﬂ—lfi—l”i@” + 2”<Ti—1fi—l - Si—lfi—l)‘)”({”
i—1 )
- 2Zk:j+1 Cs2~ R (||(f — Tk_lfk_1)|)~(£|| + W Tho1 fro1 — sk_lfk_1)|X£||)

J C(i—i) i
+2 E k=gt 1 Cs2 ( ]))‘] k(H(fk - kalfkfl)b?’iH + H(qufkq - Skflfkfl)b?f;H)
+ Cs27TINTOD 5 (f30)-
0

Using (2.35), proximity and again (2.42), we further obtain
i—1

9=(i=k) 9= (k=3)7 \J7 Zj o (i=j) \i—F )\kv)

k=ip+1

Df(g (fz) < 2C'f2_(i_j)'y)\j7 + 2CSCf(Z

k=j+1
i—1 .
+ Qcprpfq;l (fi=1)? +2CsC, ( Zkszrl 27(%]6)2))2;;71 (fe-1)?
7 ~(i~3) \i kD 2>
+ Zk:ig-‘,—l 2 A DX';L:[ (fi-1)
+ Cs27INTOD s (f;)) =2 A+ B+ C. (2.43)
0

Here the symbols A, B, C refer to the first line, second plus third line, and forth line in
(2.43). Analogously, we obtain, for j < i,

D)Zg' (fi) < 20f27(i7j)7)\j“’ +2CsCy Z::ioﬂ 9—(i=k)g—(k=j)v \i7
i-1 ,
+ Zcprpfffq (fi*1)2 +2C5Cy Zk:ioJrl 27(27’6)1)5(%}1“’“*1)2
+Cs2 Dy, (fiy) = A+ B+C. (2.44)
io
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Furthermore, for j > 1,
Dy (fi) < 2C)X7 +2CsCy Z;:io-i-l ATENT

+ 2CprD)~(g71 (fi—l)z + QCSCpr Zk )\l_kDf(271 (fk—l)Q

=ipg+1

+ CsA Dy (fi,) =t A+ B+ C. (2.45)

We estimate the terms called ‘A’ in the formulas (2.43), (2.44), and (2.45). Since v/2 < 1,
we can extract the terms 27(777/2)77/2 in (2.43) and (2.44) and the term A\"/2 in (2.45),
respectively, from the sum. The remaining summands, in case (2.43), read

Zi‘l 9—(—R) 1=/ 9~ (k=i)1/2 \j7/2 | Zj 9= (i=)(1=7/2) \(G—F)(1=/2) \k7/2.
k=j+1 k=io+1

This is bounded from above by the corresponding geometric series (We get rid of the
dependence on the index j by estimating 1/2 and A from above by max(27!,\) < 1.). The
series yields an upper bound independent of 4, j, and 75. Proceeding in an analogous way
for (2.44) and (2.45) yields a constant D > 0, independent of 7, j, and iy such that

A < D272 )\v/2 in case of (2.43) and (2.44), (2.46)
A < DX\D/? in case of (2.45). (2.47)

We are ready to estimate Dy, (f;). We choose i’ such that

18D*CsC,, max(X, 271 =27/2(1 — max(), 271)min(=7/29/2)=1 < . (2.48)

This reason for this choice becomes clear later on.
We notice that f is continuous, thus uniformly continuous because of its compact support.
Therefore, we can choose the initial level 7y for our estimates such that

D(f;) < min(1, (18D*CsC,,) 7L (i' + 1)t min(\,27H)") = D' foralli >iy.  (2.49)

We show that, for all i > i,

Dy (f;) < min(3D2707972\0=00/2 [y) (i >j > o), (2.50)
Dyi(f;) < min(3D270~00/2 1Y) (j < i), (2.51)
Dy (fi) < min(3DA~(T01/2 1) (j > ). (2.52)

Once (2.50) — (2.52) is proved, we obtain (2.36) and the corresponding statement for i < j
by enlarging constants (iy is a fixed integer, so we can multiply with const (-)7/2).

It remains to show (2.50) — (2.52) for which we use induction on i. The case i = iy, is clear.
We assume that (2.50) — (2.52) hold for the values ig,...,7 — 1. Using the decompositions
(2.43), (2.44), and (2.45) we get, for i > ig > 7,

Dj(-?'(fi) <A+ B+ C < D2 =2\=0=0)/2 4 B4 Do=(=0)7/2)\~(—i0)7/2, (2.53)

For i > j > g, Dgs(fi) <2D270=0)/2 4 B and for j > i, Dy (fi) <2DA"701/2 4+ B,
We only consider the case i > 7y > j, since the other cases are analogous. In this case, it
remains to show that B < D2~ (=77/2)=(~0)7/2 We use the induction hypotheses and see
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that for ig + ' < j,

B < QCSCPT<Z]€:],+12 G k)Dxa (fr—1) +Zk ot (i_j))\j_kp)zgfl(fkfly
ig+i’ C(i— Y\ ik
+ Zk=i0+12 ( ]))\] ’DX'iil(fk—l)2)
< 18D2CSCPT<Z;:j+1 9= (i=k)g—(k=1=j)v \(—io)y Zi:ioﬂurl f(ifj))\jfk)\(kflfio)v)

+205C,,(i' + 1)27 =9 \i=lo+)
We extract factors in the sums and apply the definition of D’ :
B < (GS(JW)18D2(2—<"—JW2A<J’—Z’0W2 max(\, 1/2)77/2

Z 9~(i=k)(1=3)g~(k=1-1)F \(—=i0)F | Z o—(i-)(1 ,%)A(j,k)(l,%)/\(k,kio)%)
k=j+1 k=ig+i'+1
+2C5C,, (18D*CsC,,) 71 (i 4 1) (37 4 1) 127 CD N =G0t i () 2717,

We further estimate

e X '_Y el
B < (CsC,)(18D? max(A, 1/2) " 24'2)27 (703 \U—i0)3 (Zmax (A, 27 ymin(i—3, 2>k>
k=0
4 %2*(1'*3'))\]'*1'0
< CSCPTQ—(i—j)’Y/Q)\(j—iO)% + Lo~ \i=io < Do~ (=973 \(i—i0)3 (2.54)

For iy +14' > j as well as the other two cases (2.50) and (2.52) one proceeds in an analogous
way. This completes the proof of Theorem 2.3.
0

We conclude with the proofs of Corollary 2.4 and Corollary 2.5.

Proof of Corollary 2.4. By Theorem 2.3 a local proximity condition (1.10) must be shown
for a geometric (bundle) analogue of S given by (1.6). In the bundle framework, such a
condition is shown in |7], for particular instances, including the examples (1.5) and (1.2),
see also [23, 6, 25]. Note that a ‘global’ proximity condition is stated in [7], but actually
our local version (1.10) is proved. O

Proof of Corollary 2.5. The smoothness index w = min(v,v’) was defined by (2.4). By
[30], v/ = 2, and since v < 2, w = v. Also, by [30] the subdominant eigenvalue \ of the
subdivision matrix equals 1/2. So plugging A = 1/2 into (2.3) completes the proof. O
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