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Abstract. We investigate interpolatory multiscale transformations on irregular combina-
torics which handle manifold-valued data. We characterize the Hölder-Zygmund smooth-
ness of a function between manifolds in terms of the coe�cient decay w.r.t. this multiscale
transform.
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1. Introduction

Linear subdivision schemes and multiscale transforms derived from subdivision are, for
example, used in computer graphics and geometric modeling [29] and also in the numerical
solution of PDEs [11, 10]. In recent years, nonlinear subdivision schemes and corresponding
multiscale transforms have gained a lot of interest. To get an impression of the diversity
of this �eld the reader is referred to [9, 22, 23, 26] and the references therein. In this
article we stick to the nonlinear geometric setting: Geometric subdivision and geometric
multiscale transforms handle data in nonlinear geometries such as Lie groups, symmetric
spaces, or Riemannian manifolds. Examples are the Euclidean motion group, hyperbolic
space, Grassmannians or the space of positive de�nite matrices.
In [4], D. Donoho analyzes linear interpolatory wavelet transforms. In particular he

characterizes smoothness properties of a function by decay properties of the so-called de-
tail coe�cients which are derived from the function via the transformation. Interpolatory
transforms can also be de�ned in a reasonable manner in the setting of geometric subdivi-
sion [22]. In [7], Grohs and Wallner show an analogue of Donoho's result for the class of
Hölder-Zygmund functions in the geometric setting. More precisely, they consider a con-
tinuous function f de�ned on Rn with values in a manifold M. This function is sampled on
the grid 2−iZn to obtain a grid function fi. A geometric subdivision scheme T is applied
to fi and a (generalized) di�erence fi+1 	 Tfi between this prediction Tfi and the (�ner)
sample fi+1 = f |2−i−1Zn gives the i-th level detail coe�cients di. The function f is a Hölder-
Zygmund function of order α, if and only if the detail coe�cients di decay with O(2−αi) as
i→∞.
In this article we treat manifold-valued functions de�ned on a two-dimensional manifold.

We consider a multiscale transform where both the choice of sample points and the pre-
diction operator are based on nonlinear geometric subdivision. As closed 2-manifolds with
non-zero Euler characteristic cannot be covered with regular quad meshes or triangular
meshes, we must be able to process irregular combinatorics.
The paper is organized as follows. We start out by gathering the necessary information on

linear and geometric subdivision (with emphasis on the situation near irregular vertices).
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Then we de�ne an interpolatory multiscale transform. Afterwards we recall results for
geometric nonlinear subdivision near irregular (or, synonymously, extraordinary) vertices.
Then we have a look at interpolatory wavelet transforms on regular grids.
The rest of the paper it devoted to the characterization of Hölder-Zygmund functions

fetween manifolds in terms of the detail coe�cient decay, in particular near irregular points.
The main result of the paper is Theorem 2.3. Its formulation is somewhat involved which is
due to the fact that the subdominant eigenvalue of the subdivision matrix enters the scene
when formulating the decay condition of the detail coe�cients di = fi+1 	 Tfi. However,
for certain schemes like the modi�ed butter�y scheme [5, 31] the statement simpli�es. We
have the following qualitative statement:

Corollary (Theorem 2.3 for the Butter�y scheme). Let M be a smooth manifold and
let N be a closed surface. For a continuous function f : N → M and any positive γ,
which is smaller than the smoothness of the butter�y scheme on regular meshes we have the
equivalence

f ∈ Lip(γ) if and only if ‖di‖∞ ≤ C2−iγ.

1.1. Linear and Geometric Subdivision Schemes. We consider meshes of the form
(K, p), where K = (V,E, F ) represents the abstract combinatorics and p : V → M is a
vertex based positioning function. A linear subdivision scheme S maps a given input mesh
(K0, p0) to a (�ner) output mesh (K1, p1) by acting as a linear operator on the linear space
of positioning functions. This works only if M is a vector space. S consists of a topological
re�nement rule generating the new combinatorics K1 from K0, and a geometric re�nement
rule generating the new positioning function p1. In order not to introduce additional nota-
tion we consider primal triangular and primal quadrilateral topological rules. We assume
that the linear scheme is a�nely invariant: This means that the position of a new vertex
p1(w) is computed as an a�ne average of old positions as follows:

p1(w) =
∑

v
αv,wp0(v) = x(w) +

∑
v
αv,w(p0(v)− x(w)), (1.1)

where
∑

v αv,w = 1 and x(w) is some arbitrary point. The second equality is a consequence
of the a�ne invariance of S. The point x(w) is called base point and becomes only important
in the nonlinear setting. We assume that αv,w 6= 0 only if v is in a neighborhood of w of
a certain globally �xed size. Furthermore, the averaging rules shall only depend on the
combinatorics of a mesh neighborhood of w of globally �xed size. This is the same setting
as is used in [28]. A subdivison scheme S is interpolatory if Vi ⊂ Vi+1 and old vertex
positions are not changed during the subdivision process. In that case subdivision adds
new vertices to the existing ones.
Starting with the linear rule (1.1) as a template, we explain how to construct a scheme

which works in a manifold. We retain the topological re�nement rule and modify the geo-
metric rule so as to work in a manifold. We begin with a subdivision scheme for Riemannian
manifolds.
Intrinsic mean subdivision: Observe that in Euclidean space the weighted center of mass

p1(w) in (1.1) is the minimizer of a quadratic function:

p1(w) = argminq
∑

v
αv,w‖p0(v)− q‖2

2.
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By replacing the Euclidean distance by the Riemannian distance, we obtain the modi�ed
rule

p1(w) = argminq
∑

v
αv,w dist(p0(v), q)2 (1.2)

which applies to data in a Riemannian manifold. Existence and uniqueness of p1(w) are
guaranteed if the distance between contributing old vertex positions p0(v) is small enough.
The precise bounds depend on the sectional curvature of the Riemannian manifold under
consideration [12]. This minimizer is called (weighted) Riemannian center of mass or intrin-
sic mean. Using the rule (1.2) naturally preserves the symmetries present in the coe�cients
αv,w. We have the following nice property:∑

v
αv,w exp−1

p1(w)(p0(v)) = 0. (1.3)

Here exp is the Riemannian exponential mapping. (1.3) implies

p1(w) = expp1(w)

(∑
v
αv,w exp−1

p1(w)(p0(v))
)
. (1.4)

If the old vertex positions p0(v) sit in a small enough Riemannian ball, the balance condition
(1.3) even characterizes the center of mass (1.2). This property could also serve as a
de�nition if no distance is available, like in a Lie group.
Log-exp subdivision: By replacing p1(w) in the right hand side of (1.4) by some base

point x(w) we get the rule

p1(w) = expx(w)

(∑
v
αv,w exp−1

x(w)(p0(v))
)
, (1.5)

which is a direct analogue of (1.1) as shall be explained in more detail below. For our
purposes the choice of base points is rather arbitrary: x(w) should just be chosen to lie in a
neighborhood (of globally �xed size) of w. Subdivison using the rule (1.5) is called log-exp
subdivision [22].
Note that by (1.4) intrinsic mean subdivision is an instance of log-exp subdivision with

a very special choice of base points, namely the mean itself. Comparing (1.5) with (1.1),
we see that the operation `point + vector' is replaced by the exponential mapping and that
the operation `point − point' is replaced by the inverse of exp . For p, q in a Riemannian
manifold and a tangent vector v, we let

p⊕ v = expp(v) and q 	 p = exp−1
p (q).

Then (1.5) arises from (1.1) by replacing + and − by ⊕ and 	, respectively.
Starting from this interpretation we can take the following viewpoint for constructing

geometric analogues of subdivision schemes of which (1.2) and (1.5) are examples. A geo-
metric analogue T of the linear scheme S retains the topological rule. The geometric rule
is adapted to work in nonlinear geometries by replacing vector space operations by suitable
substitutes. Various such constructions for di�erent geometries, including Lie groups and
symmetric spaces, have been discussed in detail, see e.g. [22, 23, 24]. It is common to
virtually all geometric schemes that in general the functions used in their construction are
not globally de�ned, but their existence is only guaranteed locally. This translates to the
fact that the input data have to be dense enough to ensure that the geometric scheme is
well-de�ned. This also has been extensively discussed e.g. in [23, 24].
General bundle framework: We brie�y recall a general framework set up in [7] which

applies to the examples above. It is assumed that the manifold M is the base space of a
smooth vector bundle π : E → M with a smooth bundle norm (e.g. in a Lie group the
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trivial bundle with the Lie algebra as �ber and some canonically extended norm on the
Lie algebra, or the tangent bundle of a Riemannian manifold with the norm induced by
the Riemannian scalar product). The substitutes of addition and subtraction are given by
an operation ⊕ : E → M, which is de�ned in a neighborhood of the zero section of the
bundle, and an operation 	 : M ×M → E, which is de�ned near the diagonal. (E.g. the
Lie group exponential or the Riemannian exponential and their inverses.) Furthermore, the
consistency conditions y	 x ∈ π−1({x}) and x⊕ (y	 x) = y have to be ful�lled. Then the
geometric analogue of (1.1) w.r.t. this bundle is given by

p1(w) = x(w)⊕
∑

v
αv,w(p0(v)	 x(w)). (1.6)

Because of (1.4), intrinsic mean subdivision can be interpreted as a log-exp analogue with
a special choice of base points and thus �ts into this framework.

1.2. De�nition of a Multiscale Transformation for Geometric Data. In the follow-
ing let N be a two-dimensional smooth domain manifold, and let M be a smooth target
manifold of arbitrary dimension. We explain a way of sampling continuous functions from
N to M : Consider a mesh (K0, p0) which covers N. We use an interpolatory subdivision
scheme T ′, which processes data in N and which is analogous to a linear scheme S. By
applying T ′, we get meshes (K1, p1), (K2, p2), . . . . By construction, these meshes have sub-
division connectivity. The (realized) vertex sets Xi = pi(Vi) in N are nested.
We assume that never two (realized) vertices pi(v) and pi(w) coincide, i.e., we assume

that pi is injective.Su�cient conditions for injectivity are given in Section 2.1.
We propose the following discrete interpolatory multiscale transform: We point-sample

a continuous function f : N →M on Xi and let

fi = f |Xi .
So fi is an M -valued fuction de�ned in the discrete subset Xi ⊂ N.
To de�ne a prediction operator T we use another interpolatory analogue T ′′ of S which

this time works in M . T ′′ is applied to the mesh (Ki, f ◦ pi) whose realized vertex set is
fi(Xi). The result is a mesh (Ki+1, gi+1) where gi+1 has values in M. By our assumption on
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Figure 1. De�nition of the
prediction operator for a mul-
tiscale transform based on in-
terpolatory geometric subdivi-
sion.

the injectivity of pi+1, the function gi+1 ◦ p−1
i+1 : Xi+1 → M is well de�ned. We de�ne the

prediction operator T by

Tfi = gi+1 ◦ p−1
i+1.

Using the geometric operation 	 pointwise, detail coe�cients are de�ned by

di = fi+1 	 Tfi.
Our multiscale transform is now de�ned by

R : f → (f0, d0, d1 . . .). (1.7)
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Note that the well-de�nedness of the transform depends on the well-de�nedness of the
subdivision operators T ′ and T ′′, which in general can only be guaranteed for dense enough
input data. This translates to the fact that we cannot arbitrarily choose the coarsest level
for sampling (as in the linear case), but there is a bound on the maximal `zoom out'. It
turns out, however, that the guaranteed theoretical bounds are very pessimistic in contrast
to what can be observed in practice.
In applications, we have the following �nite version of the transform. It reads

Rn : fn → (f0, d0, . . . , dn−1). (1.8)

A special case occurs ifM is a vector space and T ′′ is a linear scheme. Then the multiscale
transform is linear.
On the other hand, if N = R2 and the initial covering of N is given by the Z2 lattice,

choosing T ′ as an interpolatory linear scheme which reproduces linear functions yields the
multiscale transform de�ned in [22].

1.3. Combinatorial Setup. The analysis of subdivision schemes w.r.t. local properties
such as smoothness or convergence (on compact sets) splits into two parts: The �rst one
is to consider regular meshes and analyze the properties of the scheme for those meshes.
Since subdivision does not introduce additional irregular vertices as subdivision progresses,
an irregular vertex gets surrounded by an arbitrary large regular mesh with the irregular
vertex as its only singularity. The assumed locality of the scheme guarantees that away
from an irregular vertex one only has to deal with a regular mesh, and near an irregular
vertex one can deal with an unbounded mesh with only one central singularity. The second
part is to analyze the latter situation.
A regular mesh is typically identi�ed with a function on the domain V0 = Z2, where

Z2 is naturally embedded into the domain D = R2. Here the combinatorics is understood
implicitly. A k-regular mesh (one central irregular vertex of valence k) is typically identi�ed
with a function on a discrete subset of the following domain D : D is obtained by cyclically
gluing k copies of a sector Ω in the plane with opening angle 90◦ in the quad case (or 60◦

in triangular case), i.e.,
D = Ω × Zk,

where Zk are the integers modulo k. The gluing is done as follows: In each sector we have
polar coordinates (x, φ) where 0 ≤ φ ≤ 90◦ (60◦, resp.). The points (x, 90◦) of the �rst
sector and the points (x, 0◦) of the second sector are identi�ed, and so on, where the points
(x, 90◦) in the k-th sector and (x, 0◦) in the �rst sector are also identi�ed. In the triangular
case, (x, 90◦) is replaced by (x, 60◦). We refer to Figure 2 for a visualization. The domain
D is an abstract space which turns into a metric space by de�ning the distance of points by
the length of the shortest path which connects them, with the metric in the single sectors
being that of R2.
We identify a k-regular mesh with a function on the discrete subset V0 of the domain D

which we obtain as follows (see Figure 2): If the scheme is quad-based, we let Σ be the
unit square in Ω. If the scheme is triangle-based, Σ stands for the equilateral triangle of
length one in Ω. We consider the tiling of Ω with proto-tile Σ. The corners of these tiles
constitute the restriction of V0 to Ω. Forming the union over all copies of Ω, we obtain
V0. So a k-regular mesh can be seen as function on V0, and iterated subdivision produces
functions on V1, V2, . . . , where Vi = 2−iV0. Hence, for any i, a subdivision scheme T induces
an operator Ti which maps functions on Vi to functions on Vi+1. We use the notation Ti,j
which is short for Ti · · ·Tj (If i < j, let Ti,j be the identity.).
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For analysis purposes, the domain D is partitioned into so-called rings Di, i ≥ −1 (see
again Figure 2): For nonnegative i, we let

Di = n(2−iΣ\2−i−1Σ)× Zk, and D−1 = Ω\nΣ× Zk. (1.9)

Here n ≥ 1 is an integer which depends on the subdivision scheme under consideration. It
must be chosen so large that the limit of subdivision on D0 is obtained from its control set
in V0 by means of the `regular mesh' subdivision rules. A typical value is n = 4. For details
we refer to [25]. D′ denotes the union of all copies of nΣ, or in other words D′ is the union
of all rings Di (i ≥ 0) and the central point 0.
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Figure 2. Parametrization near an extraordinary vertex of valence 3 in case of
a quad mesh. Left: The domain D is obtained by gluing three quadrants together.
The �rst three rings D0, D1 and D2 are visualized. Right: The set V0 of vertices
contained in D is visualized for parameter n = 4 as needed for Kobbelt's inter-
polatory 4-point scheme. The thick line bounds the level 0 control set of the ring
D0.

1.4. Rigorous Analysis Setup and Results for Geometric Subdivision. One way
of analyzing local properties of a geometric scheme T is to go to charts and then, in these
charts, to compare it to the linear scheme S it is derived from. So let us �rst consider
the case where data is in M ⊂ Rd. One can think of M as the image under a chart. We
quantify the phrase `dense' which often occurs in our theorems: We de�ne the class PM,δ

(M ⊂ Rd, δ > 0) to be meshes whose vertices sit in M and whose diameter of faces is
bounded by δ. To compare schemes T and S we say that S and T are in local proximity
w.r.t. PM,δ, if, for all input data (K0, p0) ∈ PM,δ, the positioning functions pT1 and pS1 ful�ll

‖pS1 (w)− pT1 (w))‖Rd ≤ C sup
v1,v2∈supp(w)

‖p0(v1)− p0(v2)‖2, (1.10)

where the support `supp(w)' of the stencil of S at w are those old vertices which contribute
to pS1 (w). Here C is a constant independent of input p0 and w. In the general case that M
is a manifold with local coordinate charts φi, de�nition (1.10) is applied to the coordinate
representation of T, i.e., T is replaced by φi ◦ T ◦ φ−1.
The proof of a local property, like smoothness of T, runs as follows: First, one has to show

that the coordinate representation of T and the linear scheme S it is derived from ful�ll
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the proximity condition. The second part is to prove that proximity allows us to transfer
the desired property from the linear scheme S to T. For the second part, the proximity
condition is the only assumtion on T, it need not be a geometric analogue.
We gather information on convergence and smoothness: We say that a subdivision scheme

T converges for regular/k-regular meshes in PM,δ, if for bounded input p0 ∈ PM,δ, iterated
subdivision is de�ned and there is a continuous function f on D such ‖f |Vi−Ti,0p0‖∞ → 0
as n → ∞. The function f is called the limit function. We write f = T∞,jpj for data
pj = Tj−1,0p0.
It has been pointed out in [25] that a large class of geometric schemes meet proximity

conditions in the case of irregular combinatorics. In the same paper we prove that the
limits of those geometric analogues converge and are C1. Indeed, we show that if a scheme
T is in proximity with a linear scheme S, then T produces C1 limits, provided S meets the
following conditions:

(1) On regular meshes, the scheme S is stable in the sense that the operator assigning
the limit function to data is a lower bounded operator w.r.t. from the space of
bounded data to the space of bounded continuous functions, both equipped with
the sup-norm. (This condition is automatically ful�lled if S is interpolatory.) S
produces C1 limits on regular combinatorics.

(2) There is a matrix A (here called the subdivision matrix) that maps data on an
n-ring around the extraordinary vertex of a k-regular mesh to the corresponding
n-ring of the subdivided mesh. This n-ring is large enough to control the limit
function on D0 (see Figure 2).

(3) For any valence k, the subdivision matrix A has the single dominant eigenvalue 1
and subdominant eigenvalue λ ∈ ]0, 1[ whose algebraic and geometric multiplicity
is 2. The characteristic map χ, de�ned below, is regular and injective.

The characteristic map [20, 19, 28] is the limit function of subdivision with S on a k-
regular mesh for the following two-dimensional input: The �rst components consist of one
subdominant eigenvector and the second component consists of another linearly indepen-
dent subdominant eigenvector. In this paper we always assume that S is interpolatory, and
that S ful�lls the above requirements.
Near extraordinary vertices the smoothness is measured w.r.t. characteristic parametriza-

tion, i.e., T∞,0p0 ◦ χ−1 is considered. There is also an interpretation as smoothness of a
mapping from a certain di�erentiable manifold Q. Q is obtained by imposing a smoothness
structure on the mesh by considering it as a topological space in the cannonical way and
using the characteristic maps as charts (those are de�ned in each 1-ring Nv neighborhood
of a vertex v):

χv : Nv ⊂ Q→ R2

. Q is as smooth as the limits of S on the regular mesh. The smoothness of a scheme is
the smoothness of limit functions w.r.t. this di�erentiable structure. For details, we refer
to [1].

1.5. Linear and Geometric Interpolatory Wavelets. We brie�y summarize the results
obtained for both linear and geometric interpolatory wavelet transforms for functions on
Rn. Here a continuous function f : Rn → M (or R) is point-sampled: We let fi = f |2−iZn .
Detail coe�cients are computed as di = fi 	 Tfi−1 where T is a geometric scheme. Then
the transform reads f → (f0, d0, d1, . . .). The corresponding linear transform is obtained by
replacing T by a linear scheme S, and 	 by −.
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In this context smoothness of a function is measured by its membership in the Hölder-
Zygmund class Lipα . For α < 2, a continuous bounded function f : Rn → R belongs to
Lipα, if the second di�erences ∆2

hf = f(x + h) − 2f(x) + f(x − h) obey the inequality
‖∆2

hf‖∞ ≤ Chα for some C > 0 and all h ∈ Rn. For α ≥ 2, write α = k+ β with a positive
integer k and 0 < β < 2. Then f belongs to Lipα if all k-th order parial derivatives Dµf
are contained in Lipβ, where µ is a multi-index of degree k.
The following theorem is part of the results of [4] and the result of [7]:

Theorem 1.1. Let S be a linear interpolatory subdivision scheme on the regular mesh
which produces Lipα limits, and assume that f is a continuous function on Rd with image
contained in a compact subset.
Then, for γ < α, f ∈ Lipγ if and only if the coe�cients di w.r.t. the linear scheme decay

as O(2−γi), i.e., there is C > 0 such that 2γi‖di‖∞ ≤ C for all i.
Assume furthermore that T is a geometric analogue of S, and that f0 is dense enough

such that the geometric version of the transform is de�ned. Then the detail coe�cients
w.r.t. T also decay as O(2−γi) if and only if f ∈ Lipγ .

2. Analysis of the Transformation

2.1. Results and Examples. In order not to introduce additional technical problems, we
formulate our results for the case when N is compact. However, considering compact sets
N and using a local de�nition of Hölder-Zygmund functions seems a straightforward way
to generalize the results to non-compact N.
Our main theorem is Theorem 2.3. Its formulation needs the following notions: the

smoothness index of a linear subdivision scheme, Hölder-Zygmund functions between man-
ifolds, a certain non-degeneracy property referring to a mesh covering a manifold, and the
quantities ‖di‖i,γ (i ∈ N0) which encode the decay of the coe�cients under the transforma-
tion (1.7). We de�ne these objects �rst and then state the theorem.

Non-degeneracy Property of a Covering Mesh. Consider the initial mesh covering the man-
ifold N in Section 1.2. We have assumed in Section 1.2 that for both the initial mesh
and its subdivided meshes no two abstract vertices coincide in their realization in N. For
analysis purposes, we consider the mapping κ from the manifold Q (de�ned at the end
of Section 1.4) to N, which is given as the limit of subdivision. We request the following
non-degeneracy property:

κ : Q→ N is regular and injective. (2.1)

Obviously, this property guarantees that no vertices of the initial mesh or its subdivided
meshes coincide in N. Furthermore, it guarantees that κ is onto, and thus invertible. This
follows e.g. from degree theory [14]1

1For the reader's convenience we give the following short direct argument: Consider a curve γ : [0, 1]→ N
connecting a point x = γ(0) in the image κ(Q) and an arbitrary point y = γ(1) in N. Consider the maximal
parameter t0 such that for all smaller parameters t < t0 the curve γ([0, t]) stays in κ(Q). The compactness
of N implies that γ([0, t0]) ⊂ κ(Q). So there is p ∈ Q with κ(p) = γ(t0) and κ is a local di�eomorphism.
Now, if t0 were not 1, the inverse function theorem and the continuity of γ would guarantee that there is
a neighborhood U of κ(p) ⊂ κ(N) and ε > 0 such that γ([t0 − ε, t0 + ε]) ⊂ U. This is a contradiction and
therefore κ is onto.
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If N has non-zero Euler characteristic, we can weaken (2.1) by dropping the injectivity
assumption which then is ful�lled automatically. Again, this a consequence of degree theory
[14]2.
Corollary 2.14 in [25] yields a way to infer the regularity of κ from properties of intial

data p0 using the regularity of the according limit of S (if p0 does not satisfy this condition,
there is still the chance that p1, p2, . . . do).

De�nition of the decay measure ‖di‖i,γ. In contrast to the very simple decay conditions in
Theorem 1.1 we have somewhat more involved, but still simple conditions near extraordi-
nary vertices. To formulate these conditions we need the following notation:
The control set ctrli(U) of U ⊂ D on subdivision level i consist of those vertices in the

i-th mesh which in�uence the limit function on U in the sense that a change of data on
ctrli(U) changes the limit function on U. A more detailed de�nition is given in [28].
For �xed i, we split the domain D into the rings Dj (0 ≤ j < i) and the inner area

D\(D0 ∪ . . . ∪Di−1). For their i-th level control sets we use the notation

V j
i = ctrli(Dj), j < i,

V i
i = ctrli(D\(D0 ∪ . . . ∪Di−1)). (2.2)

The corresponding subsets of Xi (de�ned at the beginning of Section 1.2) are denoted by
Xj
i = pi(V

j
i ). We take the di�erence di−1 = fi 	 Tfi−1 and componentwise measure its size

with the bundle norm. Then we de�ne

‖di‖i,γ = maxj(λ
−j2i−j)γ‖si|Xj

i
‖∞, where si(x) = ‖di(x)‖. (2.3)

Here λ is the subdominant eigenvalue of the subdivision matrix A. It turns out that this is
the appropriate quantity to measure the detail coe�cient decay near extraordinary vertices
with.
Note that our de�nition is essentially a weighted sup-norm, where the weights depend on

the `distance' to an extraordinary vertex.3

The de�nition of ‖ · ‖i,γ naturally extends to an arbitrary mesh and the corresponding
subdivided meshes: Near extraordinary vertices, we locally use the above de�nition and
obtain a global de�nition by `gluing'. Therefore, we do not introduce complicated notation
for that situation.

Smoothness Index of a Linear Subdivision Scheme. We assume that S ful�lls the require-
ments of Section 1.4. Let ν be the smoothness index of S on regular meshes, i.e., the
maximal number such that S produces Lipγ limits for all γ < ν. Now we consider the
subdivision matrix A for a valence k vertex. We order the eigenvalues according to their

2As above, we give a short argument for the reader's convenience: By the regularity of κ and the
compactness of Q, it follows that κ is a smooth �nite covering. Then the Euler characteristics of the
covering space Q must be a multiple of that of N. But this is a contradiction to the fact that the manifolds
N and Q are homeomorphic.

3To make this precise, for the position of a vertex x near an extraordinary vertex in N, we �nd an
according ring Di. (If it lies on the boundary between two rings, take the minimal index.). If we use the
weight λ−j2i−j for j-th level data (j ≥ i) on x we end up with a weighted sup-norm for the j-th level
`sequences' (For inner vertices x which lie in no ring or a ring with j < i use the weight λ−j). Then if we
componentwise apply the exponents γ, we end up with an equivalent description of the above situation.
However, the above de�nition is more suitable for the proofs later on.
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modulus by 1, λ, λ, µ3, µ4, . . .. Then we let ν ′ = min(logλ |µ3|, 2) (subdivision schemes with
logλ |µ3| > 2 are not desirable anyway [18]). We call

ω = min(ν, ν ′) (2.4)

the smoothness index of S near an extraordinary vertex of valence k. For a general mesh,
take the minimum of the smoothness indices of all extraordinary vertices.

On the De�nition of Hölder-Zygmund Classes for Functions between Manifolds. Here we
�rst follow Triebel [21] to de�ne Hölder-Zygmund functions from N to R.We equip N with
an auxiliary Riemannian structure. We consider �nitely many exponential charts exp−1

pi

(whose images are balls of the same radius r) covering N and a subordinate C∞ partition
of unity {ϕi}. We say a continuous function f : N → R belongs to the Hölder-Zygmund
class Lipα(N,R) if (fφi) ◦ exppi is a Lip(α)-function on R2, if we consider it extended by 0
outside the ball of radius r.
Note that this de�nition does not depend on the chosen Riemannian structure. It also

does not depend on the chosen centers of the balls, or on the radius r, or the partition of
unity [21]. So the imposed Riemannian structure is only a tool for de�ning the Hölder-
Zygmund Classes, and does not prejudice the subdivision scheme we are going to employ:
If N is, for example, a Lie group we can still use a Lie group scheme.
We are going to de�ne the class Lipα(N,M) where both N and M are smooth manifolds

and N is compact. We equip both N and M with an auxiliary Riemannian structure.

De�nition 2.1. Suppose that �nitely many open geodesic balls B(xi, r) cover N such that
each f(B(xi, r)) is contained in one of the �nitely many balls B(yj, R), where the balls
B(yj, R) cover im f. Assume that the partition of unity {ϕi} is subordinate to the balls
B(xi, r). We de�ne the class of Hölder-Zygmund functions f : N →M by

f ∈ Lipγ(N,M) ⇐⇒ fi ∈ Lipγ(Rm,Rn),

where fi is obtained from (giϕi) ◦ expxi : B(0, r)→ Rn by extending with 0 outside the ball,
and gi = exp−1

yj
◦f |B(xi,r).

Note that in the above de�nition, the main purpose of introducing the Riemannian struc-
ture is to obtain nice charts. Concerning well-de�nedness we have the following statement,
whose proof is given later on.

Proposition 2.2. The de�nition of Lipγ(N,M) does not depend on the imposed Riemann-
ian structures, the particular choice of balls, or the partition of unity.

We formulate our main result:

Theorem 2.3. Let S be an interpolatory linear scheme as in Section 1.4 with smoothness
index ω > 1 on the mesh combinatorics K. Assume furthermore that the two schemes T ′

and T ′′ (acting in N and M, resp.,) both ful�ll the local proximity conditions (1.10) w.r.t. S.
Assume that the initial mesh covering N needed to de�ne the multiscale transform (1.7) has
the non-degeneracy property (2.1). Then smoothness of a continuous function f : N → M
is related to the decay of detail coe�cients di w.r.t. this multiscale transform as follows:

f ∈ Lipγ(N,M) if and only if supi∈N0
‖di‖i,γ ≤ C (2.5)

for 0 < γ < ω. Here ‖ · ‖i,γ is de�ned by (2.3).
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In Section 1.2 we already encountered the fact that nonlinear subdivision schemes are
in general only de�ned for dense enough input. By choosing a high enough index i0, the
samples of f on all levels Xi with i ≥ i0 are dense enough such that the multiscale transform
is well de�ned if we start on level i0 instead of level 0. Then the statement of the theorem
holds if we choose the i0-th level mesh as initial mesh. As the statement is an asymptotic
one in i, the initial level i0 does not matter anyway.
We want to point out that by considering N as a smooth (meaning C∞) manifold,

Theorem 2.3 does not apply to the case when N itself is a subdivision surface in R3. The
central technical reason for that is our use of geodesic balls in the de�nition of the Hölder-
Zygmund classes. This is done to obtain `nice' chart neighborhoods. However, a subdivision
surface already brings nice chart neighborhoods. Although we omit this case in this paper
to avoid further technical complications, we strongly conjecture that the above theorem is
also true when N is a subdivision surface.
Modi�cations of our proofs would also work for C1 schemes with ω = 1. However, this

would produce an additional case in most situations which we want to omit. Furthermore,
we want to point out that we do not know how to prove the above theorem if the scheme
is not C1, or ω < 1.
For the geometric situation we have the following result:

Corollary 2.4. If T ′ and T ′′ are geometric (bundle) analogues of a linear scheme S which
operate in N and M, respectively, then (2.5) is valid in this geometric setting.

Linear schemes which meet our requirements are the modi�ed butter�y scheme and Kob-
belt's interpolatory quad scheme [13]. The butter�y scheme was proposed by Dyn et al.[5].
It was modi�ed by Zorin [31] to produce smooth limits near extraordinary vertices. An
analysis of both schemes can be found in [27].
As a consequence of Corollary 2.4, the Riemannian analogues (1.2) and (1.5) of the

modi�ed butter�y scheme and of Kobbelt's interpolatory quad scheme ful�ll (2.5). Other
analogues meeting the requirements of the corollary are the projection analogue and the
geodesic analogue analyzed in [23].
The exact value of the smoothness index ω de�ned by (2.4) depends on the valences of

the vertices in the combinatorics K. Numerical evaluation in dependence of the valence of
the vertices for Kobbelt's scheme can be found in [27].
The modi�ed butter�y scheme has some properties which are very nice for our purposes:

Corollary 2.5. Let T ′ and T ′′ be geometric (bundle) analogues of the modi�ed butter�y
scheme in N and M, respectively, and assume that the initial mesh which covers N ful�lls
(2.1). Then for continuous f : N → M and and any positive γ, which is smaller than the
smoothness index of the butter�y scheme on regular meshes,

f ∈ Lipγ(N,M) if and only if ‖di‖∞ ≤ C2−iγ.

Here di are the coe�cients of the multiscale transform (1.7).

The above corollary involves the smoothness index of the butter�y scheme on regular
meshes which is known to lie in the intervall [1.44, 2]. The lower bound is given in [8],
and the upper bound is clear since the 4-point scheme does not produce C2 limits. Note
that the statement of Corollary 2.5 does not depend on the valences of the vertices in the
combinatorics K, and that the decay conditions are as in the regular mesh case.
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2.2. Proofs. The main part of this section is devoted to the proof of Theorem 2.3. We begin
by providing some information on the invariance properties of Hölder-Zygmund functions.
For an open subset U ⊂ Rn and 0 < α ≤ 1 we de�ne the Hölder classes C1,α(U,Rd) as

the space of C1 functions f : U → Rd such that, for the di�erential of f , ‖dxf(x)− dyf‖ ≤
C‖x− y‖α, for all x, y ∈ U.
We need the following properties of Hölder-Zygmund and Hölder classes which mainly

concern invariance under composition and multiplication.

Proposition 2.6. Assume that 0 < γ < 2 and that 0 < α ≤ 1 such that α ≥ γ − 1.
Consider f ∈ Lipγ(Rn,Rd). Let U, V be open sets in Rn, and let g : U → V be a C1

di�eomorphism with g ∈ C1,α(U,Rd). Furthermore, assume that U ′, V ′ are open sets in
Rd, and that h : U ′ → V ′ is a C1 di�eomorphism with h ∈ C1,α(U ′, V ′). Last but not
least, let K ⊂ W be a compact set contained in the open set W, and f ′ : W → Rd be a
continuous bounded function which ful�lls ‖∆2

hf(x)‖ < Chγ for all x ∈ K and ‖h‖ < h0,
where B(y, 2h0) ⊂ W for all y ∈ K. Under the assumption that all sets are connected and
contain 0, we have the following statements.

(i) If u ∈ Lipγ(Rn) with suppu ⊂ intK, then the product uf ′ : Rn → Rd (extended by

0 outside K) belongs to Lipγ(Rn,Rd).
(ii) If L ⊂ U is compact, then there is an open neighborhood N of g(L), such that

g−1 ∈ C1,α(N,Rn).
(iii) If f is compactly supported in V, then f ◦g ∈ Lipγ(Rn,Rd). Furthermore, ‖f ◦g‖Lipγ

≤ C‖g‖C1,α(supp f)‖f‖Lipγ .

(iv) If f has compact support and im f ⊂ U ′, then h ◦ f ∈ Lipγ(Rn,Rd).

Proof. Note that for 0 < α < 1 that the Hölder spaces C1,α(Rn) and the Hölder-Zygmund
spaces Lip1+α(Rn) coincide (which is, in general, no longer true, if we replace Rn by an
open set U).
In order to avoid pathologies (arising from the choice of domains), the Hölder functions

and the Hölder-Zygmund functions in the statements are compactly supported or de�ned
in a neighbourhood of the open set of interest− not only on the open set itself. This allows
us to use certain results for the Rn case rather than have to deal with problems at the
boundaries of the domain. In particular, certain proofs given for the Rn case which are
based on di�erences and moduli of continuity (which are quanities of a local nature) carry
over to our setting.
In case γ 6= 1, (i) is a straightforward computation. For γ = 1, we can use the represen-

tation [3, Equ. (2.4)] and proceed in a way analogous to the proof of Proposition 3 in [3].
This is justi�ed, since our setup allows to apply [3, Equ. (2.2)].
We come to (ii). The corresponding statement for the Rn case is stated as Theorem 2.1

in [2] and is there attributed to Norton [15]. The argumentation in [2] is a local one, and
choosing N as a set with compact closure in g(U) yields (ii).
For γ 6= 1, statements (iii) and (iv) in the Rn case are Lemma 2.2 and Lemma 2.3 of [2].

Again, by the locality of the arguments in the proof of these lemmas and the compactness
of supp f, (iii) holds true as stated.
The Rn statement analogous to (iii) for γ = 1 is the composition theorem of [16]. Its

proof which is based on certain moduli of continuity also applies to the situation in (iii).
A similar statement to (iv) in the Rn case for γ = 1 is Theorem 2 of [3]. The di�erence

is that only the case d = 1 is stated. However, the moduli η and ν employed in [3] can
be generalized to arbitrary dimension d in the obvious way. Then the generalization to
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arbitrary d of Proposition 4 and Theorem 6 in [3] remains valid. An analysis of the proofs
of Proposition 4 and Theorem 6 of [3] shows that they also apply to the situation in (iv)
(every C1,α function ful�lls the condition [3, Equ. (1.1)]). �

With the help of Proposition 2.6 we are able to show Proposition 2.2.

Proof of Proposition 2.2. It is su�cient to show the result for connected N.We assume that
the conditions of De�nition 2.1 are ful�lled for a function f and geodesic balls B(xi, r) and
B(yj, R), respectively. We consider another such set of balls B′(zk, r

′) and B′(vl, R
′) with

respect to di�erent Riemannian metrics on N and M, respectively. Consider the partition
of unity {ϕi} and the functions fi as in De�nition 2.1, and an analogous partition of unity
{ϕ′k} and the corresponding functions f ′k corresponding to the di�erent choice of balls. We
have to show that, for all k, f ′k ∈ Lipγ(Rm,Rn).
To that end, we choose some small enough R′′ and �nitely many balls B′(qt, R

′′) which
cover f(N) such that, for each t, there is j and l with B′(qt, R

′′) ⊂ B(yj, R) and B′(qt, R
′′) ⊂

B′(vl, R
′). Then we choose some small enough r′′ and �nitely many balls B′(ps, r

′′) which
cover N such that, for each s, there is i and k with B′(ps, r

′′) ⊂ B(xi, r) and B′(ps, r
′′) ⊂

B′(zk, r
′), and such that there is t with f(B′(ps, r

′′)) ⊂ B′(qt, R
′′).We let {ϕ′′s} be a partition

of unity subordinate to the balls B′(ps, r
′′).

We construct the functions f ′′s following De�nition 2.1, using the ballsB
′(ps, r

′′), B′(qt, R
′′)

and the partition of unity {ϕ′′s}. Proposition 2.6 yields f ′′s ∈ Lipγ(Rm,Rn) for all s.
Consider now f ′k. Modulo a change of exponential charts, we can write f ′k =

∑
s ψsf

′′
s with

smooth functions ψs with compact support. By Proposition 2.6, this change of exponential
charts leaves the Lipγ property invariant. Again by Proposition 2.6, multiplication with ψs
leaves the Lipγ property invariant. Thus f ′k ∈ Lipγ(Rm,Rn). �

We introduce some notation we need for the proof of the following theorem. For a function
pn on Vn for some k-regular mesh and a subset B of Vn, we de�ne

DB(pn) = sup{‖pn(v)− pn(w)‖ : v and w are neighbors in B}.

We drop the index B, if B = Vn. DB gives an upper bound on the coarseness of the
corresponding mesh on B.
Theorem 2.10 in [25] is only concerned with C1 smoothness. We need the following

generalization of that theorem which applies to Hölder functions.

Theorem 2.7. Let S be a linear subdivision scheme which meets the requirements of Sec-
tion 1.4, and let T be in proximity with S. Let ω > 1 be the smoothness index of S for a
k-regular mesh. If T converges for input p0 (which is guaranteed if p0 is dense enough in
the sense that D(p0) is small) then this limit is in C1,α−1 whenever 1 < α < ω.

Proof. We �rst consider linear subdivision and then use the results for that case to obtain
the corresponding statement for the nonlinear case.
We consider the limit function h = S∞,0p0 for input p0 and its restriction hm = h|Dm to

the ring Dm. As before, λ denotes the subdominant eigenvalue of the subdivision matrix
A and µ denotes the modulus of the sub-subdominant eigenvalue(s). We are ordering the
eigenvalues of A by their modulus, 1 > λ = λ > |µ3| ≥ . . . ≥ |µr| ≥ . . . . Then h0 can

be represented as h0 =
∑

r

∑lr
j=0 β

j
re
j
r with {ejr} being the eigen-rings of the subdivision

scheme [18] and βjr being coe�cients. Here the index r corresponds to the eigenvalues and
the index j corresponds to the Jordan block of the corresponding eigenvalue. The limit
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function on the m-th ring has the nice representation

hm = β0 + β1λ
me1(2m·) + β2λ

me2(2m·)

+
∑
r

lr∑
l=0

(
m
l

)
µm−lr

lr∑
i=l

βire
i−l
r (2i·) =: h′m + h′′m. (2.6)

See Chapter 4.6 of [18] for details.
Consider now the function hm ◦ χ−1, i.e., we look at the characteristic parametrization

of the limit. By [18], the di�erential of h′′m as de�ned by (2.6) ful�lls d(h′′m ◦ χ−1) =
O(λ−m(µs)m) uniformly on Dm as m→∞ for every s > 1.
Assume that α is a real number with 1 < α < ω. Since limits on regular meshes are

C1,α−1, for all points x, y in, say, three consecutive rings χ(Dm−1) ∪ χ(Dm) ∪ χ(Dm+1) the
Hölder condition

‖dx(h ◦ χ−1)− dy(h ◦ χ−1)‖ ≤ C‖x− y‖α−1 (2.7)

is ful�lled for some constant C > 0 which is independent of the particular m.
We consider the situation near the central point 0. We write h′ for the function de�ned

on each Dm by h′m (m ∈ N) and by β0 in 0 (h′m is de�ned in (2.6)). Analogously, we de�ne
h′′ with the di�erence that h′′(0) = 0. Then h′◦χ−1 is an a�ne-linear function and therefore
dx(h

′ ◦ χ−1)− dy(h′ ◦ χ−1) = 0. Hence

‖dx(h ◦ χ−1)− d0(h ◦ χ−1)‖/‖x‖α−1 = ‖dx(h′′ ◦ χ−1)‖/‖x‖α−1.

Now, consider x ∈ χ(Dm). Two consecutive rings are λ-homothetic. So there are k,K > 0
which are independent of x and m such that kλm ≤ ‖x‖ ≤ Kλm. Therefore, there are
C1, C2 > 0 such that

‖dx(h′′m ◦ χ−1)‖/‖x‖α−1 ≤ C1‖dx(h′′m ◦ χ−1)‖/λm(α−1)

≤ C2λ
−m(µs)m/λm(α−1) = (s(µ/λα))m.

We choose s > 1 such that ρ = sλν−α < 1. Then s(µ/λα) = (µ/λν)(sλν−α) = ρ. This is
because the �rst factor equals 1 by de�nition of ν. Then, ‖dx(hm ◦ χ−1)‖/‖x‖α−1 ≤ C2ρ

m

≤ C2. This implies that the Hölder condition (2.7) holds also in 0.
For points x and y, which lie in two rings, say χ(Dr) and χ(Ds), with |r − s| > 2, we

estimate di�erentials by

‖dx(h ◦ χ−1)− dy(h ◦ χ−1)‖ ≤ ‖dx(h ◦ χ−1)− d0(h ◦ χ−1)‖+ ‖dy(h ◦ χ−1)− d0(h ◦ χ−1)‖.

By the contraction of the rings, ‖x − y‖α ≥ cmax(‖x‖α, ‖y‖α) for some c > 0 which is
independent of x and y as long as |r − s| > 2. This yields a (larger) constant C ′ such that
(2.7) still holds with C replaced by C ′. Altogether, this implies that the limit of linear
subdivision is a C1,α−1 function.
Since we now know that S produces C1,α−1 limits for α < ω, we can base the proof for

the nonlinear case upon the perturbation arguments used in the proof of Theorem 2.10 of
[25]. We assume α < ω. We point out where modi�cations are necessary. First of all, note
that for a function u on Rn and some h > 0, we have c, C > 0 such that the dilated function
u(h·) can be estimated by chα‖u‖C1,α−1 ≤ ‖u(h·)‖C1,α−1 ≤ Chα‖u‖C1,α−1 . (C is a generic
constant, which can change from line to line from now on.) With this in mind, we can use
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the argumentation of Proposition 2.12 in [25] to obtain that

‖(S∞,i+1Ti,0p0 − S∞,iTi−1,0p0) ◦ χ−1|χ(Dn)‖C1,α−1

≤ C(2i−nλ−n)α‖(Ti − Si)Ti−1,0p0|ctrli+1(Dn)‖∞.

Invoking this estimate yields a statement analogous to [25, Equ. (210)] for the rings near
the extraordinary vertex:

‖(S∞,i+1Ti,0p0 − S∞,iTi−1,0p0) ◦ χ−1|χ(Dn)‖C1,α−1 ≤ Cγ(2−α)iDctrl0(D′)(p0)2, (2.8)

where γ := max(2−1, λ). The C1,α−1 version of (2.12) in [25] reads

‖(S∞,i+1Ti,0p0 − S∞,iTi−1,0p0) ◦ χ−1|χ(∪∞m=iDm∪{0})
‖C1,α−1 ≤ Cλ(2−α)iDctrl0(D′)(p0)2. (2.9)

The estimates (2.8) and (2.9) now imply that the limit using T is C1,α−1. This follows with
minor modi�cations from the proofs of Proposition 2.13 and Theorem 2.10 of [25]. �

The next proposition treats vector space data de�ned over a 2-manifold. It is a special
case of our main result.

Proposition 2.8. Let the interpolatory scheme T ′ act on the smooth compact 2-manifold N
and assume that it is in proximity to linear interpolatory scheme S. Assume that the initial
mesh (K0, p0) in N ful�lls the non-degeneracy property 2.1. Let ω be the smoothness index
of S for that mesh. We consider the linear version of the transform (1.7) and a continuous
function f : N → Rd. Then for any γ with 0 < γ < ω we have the characterization

f ∈ Lipγ(N,Rd) if and only if supi∈N0
‖di‖i,γ ≤ C. (2.10)

Furthermore, ‖f0‖∞ + supi∈N0
‖di‖i,γ provides an equivalent norm on Lipγ(N,Rd).

Proof. The proof of this statement takes some time. So we split it into several parts. Part
(1) reduces the statement to a statement involving only one extraordinary vertex. In parts
(2)�(5) we show the reduced statement: Part (2) is the `only if'-part in case γ 6= 1. The `if'-
part of the statement is treated in part (3). In part (4) we explain why ‖f0‖∞+supi∈N0

‖di‖i,γ
de�nes an equivalent norm on Lipγ(N,Rd) in case γ 6= 1. In Part (5) we show the `only
if'-part of the statement and treat the norm equivalence for γ = 1.
We need the sets Vi and Xi which were de�ned in Section 1.3 and at the beginning of

Section 1.2, respectively. The subsets V j
i and Xj

i are given by (2.2) and the lines following
(2.2), respectively. We let C be a generic constant which can change from line to line.

(1) We reduce the statement to a more accessible situation near extraordinary vertices.
To that purpose, consider the neighborhood of an extraordinary vertex x ∈ X0 ⊂ N and
the corresponding point 0 ∈ V0 in the glued domain D. Denote by X̄i = χ(Vi) the image of
Vi under characteristic parametrization. With the di�eomorphism κ of (2.1), χ ◦ κ−1 is a
local di�eomorphism mapping x to 0 ∈ R2. Thus χ ◦ κ−1 sends neighbors of x ∈ Xi ⊂ X0

to neighbors of 0 ∈ X̄i. For a visualization see Figure 3.
Now choose �nitely many small geodesic balls B(yj, r) which cover N, such that each

κ−1(B(yj, r)) is completely contained in some characteristic chart neighborhood. Let {ψj}
be C∞ functions such that each ψj is supported in B(yj, r) and equal to 1 on B(yj, r − ε),
where ε > 0 is so small such that the balls B(yj, r − ε) still cover N. If f ∈ Lipγ(N,Rd)
then fψj is compactly supported in B(yi, r) and the extension of its chart representation
with 0 outside the ball is in Lipγ(R2,Rd). Let us denote this extension also by fψj.
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The mapping uj = χ ◦ κ−1 ◦ exp−1
yj

is a di�eomorphism from B(0, r) into R2. Its image

contains the compact set uj(supp fψj). By Theorem 2.7 the inverse u−1
j is C1,α for all

α < ω. Therefore, Proposition 2.6 implies that (fψj) ◦ u−1
j ∈ Lipγ(R2,Rd) (with the usual

0-extension). This means that a Hölder-Zygmund function on N transforms to a Hölder-
Zygmund function near 0 in the image of a characteristic chart.
Conversely, if we have a Hölder-Zygmund function g in the image of a characteristic

chart which is compactly supported in uj(B(0, r)), we use Proposition 2.6 to obtain that
g ◦ uj is Hölder-Zygmund on N (with extension by 0). For a Hölder-Zygmund function g
de�ned on χ(D) which is not necessarily supported in uj(B(0, r)) we can multiply g with
ψ ◦ u−1

j to obtain a function that has support in uj(B(0, r)) and apply the above to obtain
a Hölder-Zygmund function on N.
We de�ne the details d̄i and the control sets X̄

j
i analogous to the details di and the control

sets Xj
i , only by replacing Xi ⊂ N by X ′i ⊂ R2. Then, locally near an extraordinary vertex,

the details di of f given on N and the details d̄i of f ◦ κ ◦ χ−1 are equal.
If a ball B(yj, r) in N does not contain an extraordinary vertex, then we are in the regular

mesh case. But this is a special instance of a 4-regular mesh in case of quad meshes, and a
6-regular mesh in case of triangular meshes which is treated by the general k-regular case.
Summing up, it is enough to show the following reduced statement for the k-regular mesh

for a continuous function f with compact support in a neighborhood of χ(D′):

f ∈ Lipγ(χ(D),Rd) if and only if supi∈N ‖fi − Si−1fi−1‖i,γ ≤ C. (2.11)

We also show that ‖f0‖∞ + supi∈N0
‖fi − Si−1fi−1‖i,γ provides an equivalent norm on

LipKγ (χ(D),Rd) = {f ∈ Lipγ(χ(D),Rd) : supp f ⊂ K} (2.12)

for some �xed but arbitrary neighborhood K of 0. Then the corresponding statement in
the proposition follows from Proposition 2.6(iii).
For the further proof we let d = 1, since the right hand expression in (2.11) is equiv-

alent (lower and upper constants) to the maximum of the corresponding component-wise
expressions.

(2) We show the `only if'-part of (2.11) for γ 6= 1. So our assumption is that f ∈
Lipγ(χ(D),R). fi denotes the restriction of f to X̄i. The subdivision scheme S acts on

functions on Vi as linear operator Si and thus also on functions on X̄i. We denote this
operator on functions on X̄i by Si, too. We abuse notation and also use S∞,i to denote the
operator which maps input on X̄i to its limit w.r.t. characteristic parametrization.
Consider the restriction of fi to the sets X̄j

i (the index i corresponds to level i and the
index j to the ring j near an irregular vertex). In the course of the proof we have to
estimate the norm of (fi − Si−1fi−1)|X̄j

i
. We have to distinguish two cases depending on

whether l := i− j, i.e., the di�erce between level and ring index, is small or not.
If we choose l su�ciently large, say l ≥ l0, we get that

‖(fi − Si−1fi−1)|X̄j
i
‖∞ ≤ ‖(f − S∞,i−1fi−1)|χ(D′′j )‖∞, (2.13)

where we set D′′j = Dj−1 ∪Dj ∪Dj+1. This is a consequence of S being interpolatory and

the fact that the contol sets X̄j
i on level i of χ(Dj) are contained in D′′j .
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For l = i−j < l0, we �nd r ∈ N such that X̄j
i ⊂ χ(D′j−r), whereD

′
l := D′\(D0∪. . .∪Dl−1).

(D′ was de�ned as the union of all the rings Di, i ∈ N, and 0 in Section 1.3.) Then

‖(fi − Si−1fi−1)|X̄j
i
‖∞ ≤ ‖(f − S∞,i−1fi−1)|χ(D′j−r)

‖∞. (2.14)

Observe that showing

‖(f − S∞,i−1fi−1)|χ(Dj)‖∞ ≤ Cλjγ2(j−i)γ and (2.15)

‖(f − S∞,i−1fi−1)|χ(D′i)
‖∞ ≤ Cλiγ (2.16)

is enough to complete this part of the proof. This is because (2.15) and (2.16) together
imply that (2.15) is valid with Dj replaced by D′′j or by D′i, respectively, if we enlarge the

constant C. Then (2.13) and (2.14) imply ‖(fi − Si−1fi−1)|X̄j
i
‖∞ ≤ Cλjγ2(j−i)γ, where C is

independent of i and j. This is the right-hand side of (2.11).
We show the approximation estimates (2.15) and (2.16). If γ > 1, we write f = f(v) +

dvf(· − v) + g(·) with g(x) = O(‖x − v‖γ) for x → v by our assumption. The linear
bounded operator which �rst samples f and then maps the result to the limit of subdivision
reproduces constants and linear functions w.r.t. the characteristic parametrization. So,
for a vertex v ∈ X̄i−1, we have S∞,i−1fi−1 = f(v) + dvf(· − v) + h(·) for some h with
h(x) = O(‖x− v‖γ). Then, if v is a point in X̄i−1 nearest to x, we obtain

f(x)− S∞,i−1fi−1(x) = g(x)− h(x) = O(‖x− v‖γ) for x→ v. (2.17)

If γ < 1, the estimate (2.17) is shown in the same way, without using di�erentials.
In order to estimate ‖x−v‖ in (2.17) we introduce the notation σ(A,B) = supx∈A infv∈B‖x−

v‖. By the de�nition of Vk, σ(D′k, V
k
k ) = O(2k) and σ(Dr, V

r
k ) = O(2k) as k → ∞ uni-

formly in r for r < k. Because the charactistic map is a di�eomorphism on each ring Dk

ful�lling the scaling relation χ(2·) = λχ, we have that σ(χ(D′k), X̄
k
k ) = O(λk) and that

σ(χ(Dr), X̄
r
k) = O(λr2r−k) as k →∞ uniformly in r for r < k.

If we apply this to (2.17) for x ∈ D′i−1, we get infv∈X̄i−1
‖x − v‖ = O(λi). Also, for

j ≥ i− 1, and x ∈ Dj, we obtain that infv∈X̄i−1
‖x− v‖ = O(λi2i−j).

Then plugging ‖x−v‖ ≤ Cλj2(j−i) into (2.17) and enlarging the constant C yields (2.15)
and (2.16). This completes part (2) of the proof.

(3) We show the `if'-part of (2.11). The continuous functions gi = S∞,ifi uniformly
convergence to f on χ(D) for the following reason: Since S is interpolatory, for a vertex
v ∈ X̄i nearest to x, we get that

‖gi(x)− f(x)‖ ≤ ‖S∞,ifi(x)− S∞,ifi(v)‖+ ‖f(x)− f(v)‖
≤ C sup{‖f(v)− f(w))‖ : v, w neighboring vertices}+ ‖f(x)− f(v)‖,

and the right hand side tends to 0 as i→∞.
The right-hand side of (2.11) implies that, for i > j,

‖gi − gi−1|χ(Dj)‖∞ ≤ ‖S∞,0‖‖fi − Sfi−1|X̄j
i
‖∞ ≤ C ′‖S∞,0‖2(j−i)γλjγ. (2.18)

Here C ′ is the constant in the decay condition which depends on f. In this part, we continue
to use the symbol C as a generic constant which can change from term to term, but we
only employ it if it does not depend on f. We use (2.18) to quantify the distance between
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f and the approximants gi on the ring χ(Dj) :

‖f − gi|χ(Dj)‖∞ ≤
∑∞

k=i+1
‖gk − gk−1|χ(Dj)‖∞

≤ C ′‖S∞,0‖
∑∞

k=i+1
2(j−k)γλjγ ≤ C ′C2(j−i)γλjγ. (2.19)

We consider the inner domains χ(D′j) now. Using the right-hand side of (2.11), an estimate

analogous to (2.18) yields ‖gi − gi−1|χ(D′j)
‖∞ ≤ C ′Cλiγ, whenever i ≤ j. Then,

‖f − gi|χ(D′j)
‖∞ ≤

∑∞

k=i+1
‖gk − gk−1|χ(Dj)‖∞

≤ C‖S∞,0‖(
∑j

k=i+1
λkγ +

∑∞

k=j+1
2(j−k)γλjγ)

≤ C ′Cλiγ
∑∞

k=1
max(2−1, λ)kγ ≤ C ′Cλiγ. (2.20)

We proceed to estimate second di�erences, beginning on the rings χ(Dj). By enlarging
the constant C in (2.19), the statement of (2.19) remains valid for su�ciently small ε-
neighborhoods Uj of χ(Dj). We choose the neighborhoods Uj of χ(Dj) in such a way that
each Uj is a scaled copy of the neighborhood of U0 with factor jλ. Then there is h0 > 0
such that, for any j, all x ∈ χ(Dj), and all t with ‖t‖ < λjh0, the second di�erence ∆2

tf(x)
only depends on f |Uj.
We let α be a real number with γ < α < ω. Consider the modulus of continuity ωj2(h, f) :=

sup‖t‖<h ‖(∆2
tf)|χ(Dj)‖, for h < λjh0. We have the estimate

ωj2(h, f) ≤ ωj2(h, f − gn) +
∑n−1

i=0
ωj2(h, gi+1 − gi) + ωj2(h, g0)

≤ 4‖(f − gn)|χ(Uj)‖∞ +
∑n−1

i=0
hα‖gi+1 − gi‖α,j + ωj2(h, g0), (2.21)

where ‖ · ‖α,j := suph h
−αωj2(h, ·) +‖ · |χ(Uj)‖∞.

With the help of (2.19) and (2.20) we can estimate the �rst summand on the right-hand
side of (2.21) by ‖(f − gn)|χ(Uj)‖∞ ≤ CC ′λmin(n,j)γ2−max(n−j,0)γ.
We consider the sum in (2.21). By the locality of the subdivision scheme S, the limit

function locally is a linear combination of �nitely many generating functions. Furthermore,
on a regular mesh, an integer shift of those generating functions is a generating system for
the shifted functions. Near 0 in a k-regular mesh we also have a �nite generating system.
Since going to a �ner resolution only dilates the generating systems, we get ‖gi+1−gi‖α,j ≤
C2(i−j)αλ−jα‖gi+1 − gi|χ(Uj)‖∞ in case that i > j. If i ≤ j, we obtain ‖gi+1 − gi‖α,j ≤
Cλ−iα‖gi+1 − gi|χ(Uj∪D′j)‖∞. By combining these estimates, we get∑n−1

i=0
hα‖gi+1 − gi‖α,j ≤ C

∑n−1

i=0
hαλ−min(i,j)α2max(i−j,0)α‖gi+1 − gi|χ(Uj)‖∞

≤ CC ′
∑n−1

i=0
hαλ−min(i,j)(α−γ)2max(i−j,0)(α−γ). (2.22)

We further discuss this upper bound. We consider n with n > j and set h = 2j−nλj. Then,

h−γ
∑n−1

i=0
hαλ−min(i,j)(α−γ)2max(i−j,0)(α−γ) =

∑n−1

i=0
λ(j−min(i,j))(α−γ)2(max(i−j,0)+j−n)(α−γ)

=
∑j−1

i=0
λ(j−i)(α−γ) +

∑n−1

i=j
2(i−n)(α−γ) ≤ C, (2.23)
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where C is independent of n and j. We plug (2.23) into (2.22) and the result into (2.21).
For h = 2j−nλj and j < n we obtain

h−γωj2(h, f) ≤ 4C ′C + CC ′ + CC ′, (2.24)

where the constants do not depend on j and n. Since the sequence hn = 2j−nλj goes nicely
to 0, it follows that there is h′0 with 0 < h′0 < h0 such that, for all j and h with 0 < h < h′0λ

j,

h−γωj2(h, f) ≤ C ′C. (2.25)

We consider the neighborhood of the central point. Instead of Dj we consider the central

domainD′j, and employ the second modulus of continuity ω̃j2(h, f) := sup‖t‖<h ‖(∆2
tf)|χ(D′j)

‖,
for h < λjh0. Analogous to (2.21) we estimate

ω̃j2(h, f) ≤ ω̃j2(h, f − gj) +
∑j−1

i=0
ω̃j2(h, gi+1 − gi) + ω̃j2(h, g0)

≤ 4‖(f − gj)|χ(U ′j)
‖∞ +

∑j−1

i=0
hα‖gi+1 − gi‖α,j + ωj2(h, g0), (2.26)

where the above de�nition of ‖ · ‖α,j is modi�ed by replacing Uj by U ′j. By (2.20), the
�rst summand on the right-hand side of (2.21) is bounded from above by ‖(f − gj)|χ(Uj)‖∞
≤ CC ′λjγ. Similar to (2.22) and (2.23), letting h = (cλ)j, for some c with 0 < c < 1, which
is small enough to guarantee the de�nedness of ω̃j2,

h−γ
∑j−1

i=0
hα‖gi+1 − gi‖α,j ≤ Ch−γ

∑j−1

i=0
hαλ−iα‖gi+1 − gi|χ(U ′j)

‖∞

≤ CC ′h−γ
∑j−1

i=0
hαλ−i(α−γ).

= CC ′
∑j−1

i=0
λ(j−i)(α−γ) ≤ CC ′, (2.27)

where the constants are independent of j. Combining these two estimates and plugging
them into (2.26), we get, on the inner domain χ(D′j),

h−γω̃j2((cλ)j, f) ≤ C ′C, (2.28)

uniformly in j. Firstly, this yields the decay condition ‖∆2
tf(0)‖ ≤ C ′C‖t‖γ in the central

point. Furthermore, if we consider some x in the j-th ring χ(Dj), and some y in the i-th
ring with j− i ≥ 2 then (2.28) ensures that ‖f(x)− 2f(x+y

2
) + f(y)‖ ≤ CC ′‖x− y‖γ. If the

distance is smaller, then (2.25) applies. In summary, this shows that f ∈ Lipγ(χ(D),Rd).

(4) We explain why ‖f‖′γ = ‖f0‖∞ + supi∈N0
‖fi − Si−1fi−1‖i,γ is an equivalent norm on

LipKγ (χ(D),Rd) (de�ned by (2.12)) for the case that γ 6= 1. By (2) and (3) the subspace

of continuous functions where ‖ · ‖′γ < ∞ coincides with LipKγ . It is a straightforward
computation that ‖ · ‖′γ de�nes a norm. The constants C occuring in (3) do not depend on
f (for constants depending on f, we used the symbol C ′). This yields that there is C > 0,
independent of f, such that

‖f‖LipKγ
≤ C‖f‖′γ. (2.29)

Since part (3) includes the case γ = 1, (2.29) is also valid for γ = 1.
For the converse part, we have to analyze the proof of part (2). In the beginning of part

(2), we reduce the statement of part (2) to (2.15) and (2.16). Examining this reduction we
see that the occuring constants do not depend on f. It remains to analyze the constants
occuring in the proof of (2.15) and (2.16): By careful examination, it turns out that f only
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in�uences constants via the O()-term in (2.17). This means that we have to look at the
Hölder constants of the functions g and h occuring in part (2). By de�nition, those Hölder
constants are bounded by some multiple of the Hölder norm of f. Summing up, there is
C > 0, independent of f such that

‖f‖′γ ≤ C‖f‖LipKγ
, (2.30)

in case γ 6= 1. Thus those norms are equivalent for γ 6= 1. The inequality (2.30) for the case
γ = 1 is shown at the end of part (5).

(5) It remains to show the `only if'-part of (2.11) for γ = 1. To that purpose, we use
interpolation theory. We refer to [17] for a thorough treatment in connection with Hölder-
Zygmund classes. It is well known that Lip1 is the interpolation space [Lip1−ε,Lip1+ε]1/2.
This notation means the following: For two Banach spaces X and Y with Y ⊂ X, [X, Y ]θ

is the space of all f ∈ X such that Peetre's K-functional K(f, t) ≤ Ctθ, for 0 < t ≤ 1,
where

K(f, t) = infg∈Y ‖f − g‖X + t‖g‖Y .

The interpolation space becomes a Banach space with norm ‖ · ‖ = supt t
−θK(·, t).

We proceed in the following way: We assume that f ∈ Lip1 ⊂ Lip1−ε . Then for every
t with 0 < t ≤ 1 there is gt ∈ Lip1+ε such that t−1/2‖f − gt‖Lip(1−ε) +t1/2‖gt‖Lip(1+ε) < C,
where C does not depend on t.
We let ht = f − gt. We consider the coe�cients under the multiscale transform of f,

ht and gt on X̄j
i . We denote these coe�cients on X̄j

i by d(f), d(gi), . . . . By (4) we have
‖d(ht)‖∞ < C ′2(j−i)(1−ε)λj(1−ε)‖ht‖Lip(1−ε), and ‖d(gt)‖∞ < C ′′2(j−i)(1+ε)λj(1+ε)‖gt‖Lip(1+ε),

By applying the triangle inequality and letting t1/2 = 2(j−i)ελjε we get

2i−jλ−j‖d(f)‖∞ ≤ 2i−jλ−j‖d(ht)‖∞ + 2i−jλ−j‖d(gt)‖∞
≤ C ′2−(j−i)ελ−jε‖ht‖Lip(1−ε) + C ′′2(j−i)ελjε‖gt‖Lip(1+ε)

≤ max(C ′, C ′′)(t−1/2‖f − gt‖Lip(1−ε) + t1/2‖gt‖Lip(1+ε))

≤ 2C ′′′max(C ′, C ′′)‖f‖Lip1
. (2.31)

For the last inequality we have used the equivalence of the norm induced by theK-functional
and the norm induced by second di�erences. (2.31) means that we have the desired decay
of the multiscale coe�cients if f ∈ Lip1 .
Furthermore, the coe�cient based norm ‖‖′1 from part (4) obeys

‖f‖′1 ≤ C‖f‖Lip1
.

The other direction, i.e., ‖f‖Lip1
≤ C‖f‖′1, was already established in (2.29). Hence ‖f‖′1

is an equivalent norm on Lip1 .
�

Having collected all this information we are now able to prove Theorem 2.3.

Proof of Theorem 2.3. This proof is quite long which is the reason why we split it into
several parts. In part (1) we reduce the statement to a statement only involving one
extraordinary vertex. We proceed similar to the proof of Proposition 2.8 which is the reason
for being quite brief in this part. Part (2) is the `only if'-part of the reduced statement,
and part (3) is its `if'-part (which is actually the hard estimate).
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Figure 3. Setup for the proofs of Proposition 2.8 and Theorem 2.3.

We use the notation of the proof of Proposition 2.8. Furthermore, we use the symbol C
for a generic constant which can change from line to line.

(1) Similar to the proof of Proposition 2.8 we reduce the statement to the situation near
an extraordinary vertex. We show that a certain way of `applying charts' does neither a�ect
the Hölder-Zygmund classes nor the decay of detail coe�cients.
We cover f(N) with balls B(zk, R), and N with balls B(yj, r) such that each f(B(zk, r))

is completely contained in one of the B(yj, r) and such that the image of each B(zk, r)
under κ−1 is completely contained in some characteristic chart neighborhood.
We let ψj be C

∞ functions supported in B(yj, r) and equal to 1 in B(yj, r − ε), where
ε > 0 is so small that the balls B(yj, r − ε) still cover N. Then the extension by 0 of
gj = exp−1

zk
◦(fψj) ◦ exp−1

yj
is in Lipγ(R2,Rd). Except for applying charts, gj agrees with f

on B(yj, r − ε).
With the mapping uj = χ ◦κ−1 ◦ exp−1

yj
already de�ned in part (1) of the proof of Propo-

sition 2.8 we obtain that the 0-extension of gj ◦ u−1
j is in Lipγ(R2,Rd), by Proposition 2.6.

Conversely, assume that we have Hölder-Zygmund functions gj (of order γ) such that
each gj is supported in a neighborhood of χ(D′), maps to M, and agrees with f ◦ u−1

j on
uj(suppψ). Then we restrict gj to uj(B(yj, r)), go to charts, and multiply the result with
ψ ◦ u−1

j to obtain a Hölder-Zygmund function g′j with support in uj(suppψ). Then g′j ◦ uj
(extension by 0) is Hölder-Zygmund and agrees with f on B(yj, r − ε). Furthermore, the
coe�cients of the multiscale transform for gj around 0 and the transform of f near the
corresponding extraordinary vertex agree.
After going to charts for M, the following statement implies the theorem. For the k-

regular mesh and for a continuous function f with compact support in a neighborhood of
χ(D′) we have

f ∈ Lipγ(χ(D),Rd) if and only if supi∈N ‖fi − Ti−1fi−1‖i,γ ≤ C. (2.32)

There is one more thing to explain here: We let the scheme T act in a chart which allows
us to write an ordinary minus sign in (2.32). The right-hand side expression in (2.32),
‖fi − Ti−1fi−1‖i,γ, which is based on the Euclidean norm, is bounded both from above and
below by constants times ‖fi 	 Ti−1fi−1‖i,γ, which is based on the smooth bundle norm.
This is a consequence of the properties of 	, the smoothness of the bundle norm and the
compactness of the image of f. For details, see [7].

(2) We show the `only if'-part of (2.32), assuming f ∈ Lipγ(χ(D),Rd). Equation (2.11)

yields that supi∈N0
‖fi − Si−1fi−1‖i,γ ≤ C ′. We consider the sets X̄j

i and observe ‖fi −
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Si−1fi−1|X̄j
i
‖∞ ≤ C ′2(j−i)γλγ

j
. Since S and T ful�ll the proximity condition (1.10),

‖fi − Ti−1fi−1|X̄j
i
‖∞ ≤ ‖fi − Si−1fi−1|X̄j

i
‖∞ + ‖(Si−1fi−1 − Ti−1fi−1)|X̄j

i
‖∞

≤ C ′2(j−i)γλγ
j

+ CDX̃j
i−1

(fi−1)2. (2.33)

Here we let X̃j
i = X̄j

i , if i ≥ j, and X̃j
i = X̄ i

i , if i < j. Then DX̃j
i−1

(fi−1)2 is the dif-

ference of function values of f on neighboring vertices in X̃j
i−1. Since we consider f ∈

Lipγ over the characteristic parametrization, neighboring vertices in X̃j
i−1 have distance

2−min(i−j−1,0)λmin(j,i−1).
If f ∈ Lipγ, then f ∈ Lipγ/2+ε, when we choose ε such that 0 < ε < max(1− γ/2, γ/2).

This choice of ε guarantees that γ/2 + ε < 1. The the Lipschitz norm based on �rst
di�erences is an equivalent norm on Lipγ/2+ε . Hence, since f ∈ Lipγ/2+ε, and all fi are
samples of f,

DX̃j
i−1

(fi−1) ≤ 2−min(i−j−1,0)(γ/2+ε)λmin(j,i−1)(γ/2+ε). (2.34)

Plugging (2.34) into (2.33) yields the decay of the multiscale transform w.r.t T which is
required by (2.32).

(3) We consider now the `if'-part of (2.32), i.e., we assume a continuous function f having
the decay as stated by (2.32). We again look at the control sets X̃j

i . By assumption, the
decay conditions for i > j read:

‖(fi − Ti−1fi−1)|X̃j
i
‖ ≤ Cf2

−(i−j)γλjγ. (2.35)

If i ≤ j, then the right hand side is replaced by Cfλ
iγ. Here Cf is a constant which depends

on the continuous function f, but is neither dependent on the `ring-index' j nor on the
detail level i. Our aim is to show that (2.32) and the corresponding statement for i ≤ j
imply that for i > j,

‖(fi − Si−1fi−1)|X̃j
i
‖ ≤ C ′2−(i−j)γλjγ, (2.36)

and for i ≤ j, the same with the right hand side replaced by C ′λiγ. Here the constant
C ′ should not depend on i or j. Once (2.36) is proved we apply (2.11), and obtain that
f ∈ Lipγ as desired.
It remains to show (2.36) which will take some time. We start by invoking the proximity

and decay conditions to obtain the following estimate for i > j :

‖(fi+1 − Sifi)|X̃j
i+1
‖ ≤ ‖(fi+1 − Tifi)|X̃j

i+1
‖+ ‖(Tifi − Sifi)|X̃j

i+1
‖

≤ Cf2
−(i+1−j)γλjγ + CprDX̃j

i
(fi)

2. (2.37)

Here Cpr is the constant from the proximity condition. This estimate is valid for dense
enough input, which we can always achieve by going to a �ner sampling level since f is
continuous. Analogously, if i ≤ j,

‖(fi+1 − Sifi)|X̃j
i+1
‖ ≤ 2Cfλ

iγ + CprDX̃j
i
(fi)

2. (2.38)

From (2.37) and (2.38) we conclude (2.36) if we know the estimates

DX̃j
i
(fi) ≤ C2−(i−j)γ/2λjγ/2 (i > j), (2.39)

DX̃j
i
(fi) ≤ Cλiγ/2 (i ≤ j), (2.40)
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for some constant C > 0. We are thus left with proving (2.39) and (2.40). We write, for
i > j > i0,

fi =(fi − Si−1fi−1) + . . .+ (Si−1,j+1fj+1 − Si−1,jfj) + (Si−1,jfj − Si−1,j−1fj−1)

+ . . .+ (Si−1,i0+1fi0+1 − Si−1,i0f0) + Si−1,i0fi0 . (2.41)

By Lemma 2.11 in [25], there is a constant CS such that for any subdivision level k and
input pk on level k,

DX̃j
i
(Si−1,kpk) ≤ CS2−(i−k)DX̃j

k
(pk) (i ≥ k > j),

DX̃j
i
(Si−1,kpk) ≤ CS2−(i−j)λj−kDX̃j

k
(pk) (i > j > k),

DX̃j
i
(Si−1,kpk) ≤ CSλ

i−kDX̃j
k
(pk) (i ≤ j ≤ k). (2.42)

Furthermore,

DX̃j
k
(fk − Sk−1fk−1) ≤ DX̃j

k
(fk − Tk−1fk−1) +DX̃j

k
(Tk−1fk−1 − Sk−1fk−1)

≤ 2‖(fk − Tk−1fk−1)|X̃j
k
‖+ 2‖(Tk−1fk−1 − Sk−1fk−1)|X̃j

k
‖

We use this and (2.42) to estimate the single terms in the telescoping sum (2.41). For the
control sets X̃j

i , where i > j > i0, we get

DX̃j
i
(fi) ≤ 2‖(fi − Ti−1fi−1)|X̃j

i
‖+ 2‖(Ti−1fi−1 − Si−1fi−1)|X̃j

i
‖

+ 2
∑i−1

k=j+1
CS2−(i−k)(‖(fk − Tk−1fk−1)|X̃j

k
‖+ ‖(Tk−1fk−1 − Sk−1fk−1)|X̃j

k
‖)

+ 2
∑j

k=i0+1
CS2−(i−j)λj−k(‖(fk − Tk−1fk−1)|X̃j

k
‖+ ‖(Tk−1fk−1 − Sk−1fk−1)|X̃j

k
‖)

+ CS2−(i−j)λj−i0DX̃j
i0

(fi0).

Using (2.35), proximity and again (2.42), we further obtain

DX̃j
i
(fi) ≤ 2Cf2

−(i−j)γλjγ + 2CSCf

(∑i−1

k=j+1
2−(i−k)2−(k−j)γλjγ +

∑j

k=i0+1
2−(i−j)λj−kλkγ

)
+ 2CprDX̃j

i−1
(fi−1)2 + 2CSCpr

(∑i−1

k=j+1
2−(i−k)DX̃j

k−1
(fk−1)2

+
∑j

k=i0+1
2−(i−j)λj−kDX̃j

k−1
(fk−1)2

)
+ CS2−(i−j)λj−i0DX̃j

i0

(fi0) =: A+B + C. (2.43)

Here the symbols A,B,C refer to the �rst line, second plus third line, and forth line in
(2.43). Analogously, we obtain, for j ≤ i0,

DX̃j
i
(fi) ≤ 2Cf2

−(i−j)γλjγ + 2CSCf
∑i−1

k=i0+1
2−(i−k)2−(k−j)γλjγ

+ 2CprDX̃j
i−1

(fi−1)2 + 2CSCpr
∑i−1

k=i0+1
2−(i−k)DX̃j

k−1
(fk−1)2

+ CS2−(i−i0)DX̃j
i0

(fi0) =: A+B + C. (2.44)
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Furthermore, for j ≥ i,

DX̃j
i
(fi) ≤ 2Cfλ

iγ + 2CSCf
∑i

k=i0+1
λi−kλkγ

+ 2CprDX̃j
i−1

(fi−1)2 + 2CSCpr
∑i

k=i0+1
λi−kDX̃j

k−1
(fk−1)2

+ CSλ
i−i0DX̃j

i0

(fi0) =: A+B + C. (2.45)

We estimate the terms called ‘A′ in the formulas (2.43), (2.44), and (2.45). Since γ/2 < 1,
we can extract the terms 2−(i−j)γ/2λjγ/2 in (2.43) and (2.44) and the term λiγ/2 in (2.45),
respectively, from the sum. The remaining summands, in case (2.43), read∑i−1

k=j+1
2−(i−k)(1−γ/2)2−(k−j)γ/2λjγ/2 +

∑j

k=i0+1
2−(i−j)(1−γ/2)λ(j−k)(1−γ/2)λkγ/2.

This is bounded from above by the corresponding geometric series (We get rid of the
dependence on the index j by estimating 1/2 and λ from above by max(2−1, λ) < 1.). The
series yields an upper bound independent of i, j, and i0. Proceeding in an analogous way
for (2.44) and (2.45) yields a constant D > 0, independent of i, j, and i0 such that

A ≤ D2−(i−j)γ/2λjγ/2 in case of (2.43) and (2.44), (2.46)

A ≤ Dλiγ/2 in case of (2.45). (2.47)

We are ready to estimate DX̃j
i
(fi). We choose i′ such that

18D2CSCpr max(λ, 2−1)(i′−2)γ/2(1−max(λ, 2−1)min(1−γ/2,γ/2))−1 < 1. (2.48)

This reason for this choice becomes clear later on.
We notice that f is continuous, thus uniformly continuous because of its compact support.

Therefore, we can choose the initial level i0 for our estimates such that

D(fi) ≤ min(1, (18D2CSCpr)
−1(i′ + 1)−1 min(λ, 2−1)i

′
) =: D′ for all i ≥ i0. (2.49)

We show that, for all i ≥ i0,

DX̃j
i
(fi) ≤ min(3D2−(i−j)γ/2λ(j−i0)γ/2, D′) (i > j ≥ i0), (2.50)

DX̃j
i
(fi) ≤ min(3D2−(i−i0)γ/2, D′) (j < i0), (2.51)

DX̃j
i
(fi) ≤ min(3Dλ−(i−i0)γ/2, D′) (j ≥ i). (2.52)

Once (2.50) � (2.52) is proved, we obtain (2.36) and the corresponding statement for i < j
by enlarging constants (i0 is a �xed integer, so we can multiply with const (·)i0γ/2).
It remains to show (2.50) � (2.52) for which we use induction on i. The case i = i0, is clear.

We assume that (2.50) � (2.52) hold for the values i0, . . . , i− 1. Using the decompositions
(2.43), (2.44), and (2.45) we get, for i ≥ i0 > j,

DX̃j
i
(fi) ≤ A+B + C ≤ D2−(i−j)γ/2λ−(j−i0)γ/2 +B +D2−(i−j)γ/2λ−(j−i0)γ/2. (2.53)

For i > j ≥ i0, DX̃j
i
(fi) ≤ 2D2−(i−i0)γ/2 +B, and for j ≥ i, DX̃j

i
(fi) ≤ 2Dλ−(i−i0)γ/2 +B.

We only consider the case i ≥ i0 > j, since the other cases are analogous. In this case, it
remains to show that B ≤ D2−(i−j)γ/2λ−(j−i0)γ/2. We use the induction hypotheses and see

24



that for i0 + i′ < j,

B ≤ 2CSCpr

(∑i

k=j+1
2−(i−k)DX̃j

k−1
(fk−1)2 +

∑j

k=i0+i′+1
2−(i−j)λj−kDX̃j

k−1
(fk−1)2

+
∑i0+i′

k=i0+1
2−(i−j)λj−kDX̃j

k−1
(fk−1)2

)
≤ 18D2CSCpr

(∑i

k=j+1
2−(i−k)2−(k−1−j)γλ(j−i0)γ +

∑j

k=i0+i′+1
2−(i−j)λj−kλ(k−1−i0)γ

)
+ 2CSCpr(i

′ + 1)2−(i−j)λj−(i0+i′)D′.

We extract factors in the sums and apply the de�nition of D′ :

B ≤ (CSCpr)18D2(2−(i−j)γ/2λ(j−i0)γ/2 max(λ, 1/2)−γ/2( i∑
k=j+1

2−(i−k)(1−γ
2

)2−(k−1−j)γ
2λ(j−i0)

γ
2 +

j∑
k=i0+i′+1

2−(i−j)(1−γ
2

)λ(j−k)(1−γ
2

)λ(k−1−i0)
γ
2

)
+ 2CSCpr(18D2CSCpr)

−1(i′ + 1)(i′ + 1)−12−(i−j)λj−(i0+i′) min(λ, 2−1)i
′
.

We further estimate

B ≤ (CSCpr)(18D2 max(λ, 1/2)−
γ
2 i′

γ
2 )2−(i−j)γ

2λ(j−i0)
γ
2

( ∞∑
k=0

max(λ, 2−1)min(1−γ
2
,
γ
2

)k
)

+ 1
18

2−(i−j)λj−i0

≤ CSCpr2
−(i−j)γ/2λ(j−i0)

γ
2 + 1

18
2−(i−j)λj−i0 ≤ D2−(i−j)γ

2λ(j−i0)
γ
2 (2.54)

For i0 + i′ ≥ j as well as the other two cases (2.50) and (2.52) one proceeds in an analogous
way. This completes the proof of Theorem 2.3.

�

We conclude with the proofs of Corollary 2.4 and Corollary 2.5.

Proof of Corollary 2.4. By Theorem 2.3 a local proximity condition (1.10) must be shown
for a geometric (bundle) analogue of S given by (1.6). In the bundle framework, such a
condition is shown in [7], for particular instances, including the examples (1.5) and (1.2),
see also [23, 6, 25]. Note that a `global' proximity condition is stated in [7], but actually
our local version (1.10) is proved. �

Proof of Corollary 2.5. The smoothness index ω = min(ν, ν ′) was de�ned by (2.4). By
[30], ν ′ = 2, and since ν < 2, ω = ν. Also, by [30] the subdominant eigenvalue λ of the
subdivision matrix equals 1/2. So plugging λ = 1/2 into (2.3) completes the proof. �
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