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The Jacobi polynomials induce a translation operator on function spaces on the interval [−1, 1]. For any ho-
mogeneous Banach space B w.r.t. this translation, we can study the according little and big Lipschitz spaces,
lipB(λ) and LipB(λ), respectively. The big Lipschitz spaces are not homogeneous themselves.

Therefore we introduce semihomogeneous Banach spaces w.r.t. Jacobi translation, of which the big Lip-
schitz spaces are particular examples. We study the relation between semihomogeneous Banach spaces and
their homogeneous counterparts. We give a characterisation of Lipschitz spaces in terms of intermediate spaces.
Our main result is that, for an arbitrary homogeneous Banach space B, the bidual of the little Lipschitz space
lipB(λ) is the corresponding big one, namely LipB(λ).
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1 Introduction

It is natural to generalize the concept of a Lipschitz function f on the real line, i.e., f obeys |f(y) − f(x)| <
C|x− y|λ (0 < λ < 1), to general metric spaces. Here |x− y|λ is replaced by a distance d(x, y). A lot of work
has been done on spaces of Lipschitz functions on metric spaces, see e.g. Weaver [22].

On the real line, a Lipschitz function f is also characterized by ‖Thf − f‖∞ ≤ C|h|λ, with the ordinary
translation operators Th. This expression also makes sense if we replace the sup-norm by the norm of some
homogeneous Banach space B, e.g. B = L1(R). Then the Lipschitz space w.r.t. B consists of the elements in
B with ‖Thf − f‖B ≤ C|h|λ. By replacing the (induced) ordinary translation on functions by a generalized
translation we obtain a different generalization of the concept of Lipschitz spaces.

In this paper, we consider the interval [−1, 1] and a (generalized) translation induced by the Jacobi polynomi-
als. We investigate Lipschitz spaces w.r.t. arbitrary homogeneous Banach spaces.

(Semi-)homogeneous Banach spaces and Segal algebras on locally compact groups are well understood, see
e.g. the book [21]. In order to generalize these concepts to S = [−1, 1], on which no group structure is imposed,
one first of all needs a notion of translation on the according L1-space. We stick to the interval equipped with
its Borel σ-Algebra and the measure π(α,β), whose density w.r.t. Lebesgue measure λ is given by cα,β(1 −
x)α(1 + x)β . Here the normalisation constant cα,β = 2−α−β−1 Γ(α+ β+ 2) Γ(α+ 1)−1 Γ(β+ 1)−1 is chosen
such that π(α,β)(S) = 1. The Jacobi polynomials R(α,β)

n , n ∈ N0, are orthogonal w.r.t. π(α,β). We choose
the normalization R(α,β)

n (1) = 1, and assume throughout that (α, β) ∈ J, where J = {(α, β) : α ≥ β ≥
−1/2 ∨ (α ≥ β > −1 ∧ α+ β ≥ 0)}. In that case we have for all x, y ∈ S the positive linearization

R(α,β)
n (x)R(α,β)

n (y) =

∫ 1

−1
R(α,β)
n (z) dπ

(α,β)
(x,y) (z), (1.1)

where π(α,β)
(x,y) is a probability measure. This important result is due to Gasper, see [11]. We frequently drop the

parameters (α, β) and think of them as fixed and being contained in J. Details on Jacobi polynomials can be
found in [19].

∗ e-mail: andreas.weinmann@tugraz.at, Phone: +43 316 873 8446, Fax: +43 316 873 8446
∗∗ e-mail: lasser@helmholtz-muenchen.de, Phone: +49 89 3187 4159, Fax: +49 89 3187 3369

Copyright line will be provided by the publisher



2 A. Weinmann and R. Lasser: Jacobi Lipschitz Spaces

For any x ∈ S, a (generalized) translation operator on L1(S, π) is given by

Txf(y) =

∫ 1

−1
f(z) dπ(x,y)(z). (1.2)

For all x ∈ S, we have that ‖Txf‖1 ≤ ‖f‖1, and furthermore the translation S → L1(S, π), x → Txf is
continuous. These statements can be proved in the framework of hypergroups; we refer to [4]. In fact, S bears a
hypergroup structure induced by the π(x,y), see [14]. So we have the tools of harmonic analysis on commutative
compact hypergroups at our disposal.

(Semi-)homogeneous Banach spaces w.r.t. Jacobi translation can now be defined as follows.
Definition 1.1 Let T be a linear subspace of L1(S, π) which becomes a Banach space with a norm ‖ ‖T . T is

called semihomogeneous, if
(B1) T contains all Jacobi polynomials Rn (n ∈ N0),
(B2) for all f ∈ T, ‖f‖L1 ≤ ‖f‖T ,
(B3) for f ∈ T and x ∈ [−1, 1], Txf ∈ T and ‖Txf‖T ≤ ‖f‖T .

T is called homogeneous, if in addition,
(B4) for fixed f ∈ T, the translation S → T, x 7→ Txf, is continuous.

Homogeneous Banach spaces with respect to Jacobi polynomials were introduced in [10]. Examples can also
be found there. Semihomogeneous Banach spaces with respect to commutative locally compact groups were e.g.
treated in [21].

Using the (generalized) translation, the convolution on L1(S, π) is given by

(f ∗ g)(x) :=

∫ 1

−1
f(z)Txg(z) dπ(z). (1.3)

We have f ∗ g = g ∗ f, and ‖f ∗ g‖1 ≤ ‖f‖1‖g‖1. It follows that L1(S, π) is a commutative Banach algebra with
this convolution as multiplication.

Definition 1.2 A semihomogeneous Banach space T is called convolutable if, for g ∈ L1(S, π), and f ∈ T,
for the ordinary convolution product in L1(S, π) holds, that f ∗ g ∈ T and ‖f ∗ g‖T ≤ ‖f‖T ‖g‖L1 .

Hence, convolution w.r.t. L1(S, π) induces a module operation of L1(S, π) on convolutable T.
The Fourier-Jacobi transformation from L1(S, π) into c0(N0) is given by

F(f)(n) =

∫ 1

−1
f(z)Rn(z) dπ(z). (1.4)

We frequently use the notation f̌ instead of F(f). A uniqueness theorem is valid, and the range space is well
defined, since a Riemann-Lebesgue lemma holds true. It can be easily shown that F(Txf)(n) = Rn(x)f̌(n), for
n ∈ N0 and f ∈ L1(S, π). The connection between convolution and Fourier-Jacobi transformation is given by

F(f ∗ g)(n) = f̌(n) ǧ(n), (1.5)

where f, g ∈ L1(S, π) and n ∈ N0.
We need the notion of an approximation kernel in L1(S, π) later on. Therefore we recall the definition.
Definition 1.3 Let I equal either N or R+. A family {Ki}i∈I ⊂ L1(S, π) is called an approximation kernel

if
(K1)

∫ 1

−1Ki(x) dπ(x) = 1 for all i ∈ I.
(K2) supi∈I ‖Ki‖L1(S,π) <∞,
(K3) limi→∞ Ǩi(m) = 1 for all m ∈ N0.

An approximation kernel is called positive if, in addition,
(K4) Ki ≥ 0 for all i ∈ I.

We call the family {Ki}i∈I a polynomial approximation kernel, if Ki is a polynomial for every i ∈ I. An
approximation kernel has the peaking property, if for every h ∈ [−1, 1[, and every ε > 0, there is an N ∈ I, such
that

∫ h
−1 |Kn(x)| dπ(x) < ε for all n ≥ N.
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The de la Vallée-Poussin kernel is an example of a positive polynomial approximation kernel, indexed by the
nonnegative integers, which has the peaking property, see [1].

The structure of our paper is as follows. We start out by investigating semihomogeneous Banach spaces. We
show that there is exactly one homogeneous Banach space contained in semihomogeneous T, which coincides
with the closure of the space of polynomials w.r.t. the norm of T. Then we study an unbounded operator, the
Jacobi differential operator, in a homogeneous Banach space B. This operator will be needed later on, and its
domain is an example of a homogeneous Banach space. In the following we concentrate on Lipschitz spaces.
Again starting from a homogeneous Banach space B, we can define little and big Lipschitz space w.r.t. B. The
big Lipschitz spaces turn out to be convolutable semihomogeneous Banach spaces and the little Lipschitz spaces
are the homogeneous ones contained in them. We characterize Lipschitz spaces in terms of intermediate spaces
between a homogeneous Banach space B and the domain of the Jacobi differential operator in B. The rest of the
paper is devoted to the proof that the second dual of a little Lipschitz space is the according big one, for general
B. For [0, 1] and the torus, with ordinary translation, these are results of Ciesielsky [8] and deLeeuw [15].

2 Semihomogeneous Banach Spaces

In this section we show that a homogeneous Banach space B is convolutable and that approximation with kernels
also works in B. We also show that every semihomogeneous Banach space has exactly one closed homogeneous
Banach subspace.

First of all, we show that the convolution of an element g ∈ L1(S, π) and f ∈ B, where B is a homogeneous
Banach space, agrees with a module operation of L1(S, π) on B, defined by a certain Bochner integral.

Lemma 2.1 Let B be a homogeneous Banach space. Then B is a Banach-L1(S, π)-module via ~ : B ×
L1(S, π)→ B, given by

f ~ g :=

∫ 1

−1
g(x)Txf dπ(x),

where the integral is understood as a Bochner integral. For all f ∈ B and g ∈ L1(S, π), we have f ~ g = f ∗ g,
where ∗ is the convolution in L1(S, π). In particular,

‖f ∗ g‖B ≤ ‖f‖L1(S,π)‖g‖B . (2.1)

P r o o f. Property (B4) of a homogeneous Banach space guarantees that {Txf}x∈S ⊂ B is separable. Hence
the function [−1, 1]→ B, x 7→ g(x)Txf, is strongly measurable. It follows from∫ 1

−1
|g(x)| ‖Txf‖B dπ(x) ≤

∫ 1

−1
|g(x)| ‖f‖B dπ(x) = ‖g‖1 ‖f‖B

that it is Bochner integrable. To see that ~ coincides with the convolution, note that B → C, f 7→ f̌(n), is
continuous, since |f̌(n)| ≤ ‖f‖L1(S,π) ≤ ‖f‖B . Hence, for n ∈ N0,

F(f ~ g)(n) =

∫ 1

−1
g(x)F(Txf)(n) dπ(x)

=

∫ 1

−1
g(x)Rn(x)f̌(n) dπ(x) = f̌(n)ǧ(n) = F(f ∗ g)(n).

The uniqueness theorem yields f ∗ g = f ~ g ∈ B.

Proposition 2.2 Let B be a homogeneous Banach space. Then the polynomials are dense in B.

P r o o f. Let f ∈ B and consider a positive polynomial approximation kernel {Kn}n∈N with the peaking
property. Since Kn ∗ f is a polynomial, it is sufficient to show that ‖Kn ∗ f − f‖B → 0 as n → ∞. It follows
from Lemma 2.1 that

‖Kn ∗ f − f‖B = ‖
∫ 1

−1(Txf − f)Kn(x) dπ(x)‖B ≤
∫ 1

−1 ‖Txf − f‖BKn(x) dπ(x).
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4 A. Weinmann and R. Lasser: Jacobi Lipschitz Spaces

Let ε > 0. By (B4), there is h ∈ [−1, 1[ such that ‖Txf − f‖B < ε
4 , for all x with h ≤ x < 1. We obtain that

‖Kn ∗ f − f‖B ≤
∫ h

−1
Kn(x)‖Txf − f‖B dπ(x) +

∫ 1

h

ε

4
Kn(x) dπ(x)

≤
∫ h

−1
(‖Txf‖B + ‖f‖B)Kn(x) dπ(x) +

ε

2
.

We use the peaking property of the kernel and choose N ∈ N such that
∫ h
−1Km(x) dπ(x) < ε

4‖f‖B , for all
m ≥ N. This implies

‖Km ∗ f − f‖B ≤ 2‖f‖B
∫ h

−1
Km(x) dπ(x) +

ε

2
< 2‖f‖B

ε

4‖f‖B
+
ε

2
= ε.

This completes the proof.

An application of the Banach-Steinhaus theorem yields the following corollary.
Corollary 2.3 Let B be a homogeneous Banach space and {Kn}n∈I be an approximation kernel. Seen as

operators Kn : B → B, Knf := Kn ∗ f, n ∈ I, we have that ‖Kn‖B→B ≤ ‖Kn‖L1(S,π). In addition, for all
f ∈ B,

‖Kn ∗ f − f‖B → 0 as n→∞.

We want to show that a semihomogeneous Banach space contains exactly one closed subspace which is a
homogeneous Banach space. For a semihomogeneous Banach space T, we define BT by

BT = {f ∈ T : x 7→ Txf is continuous in all x ∈ [−1, 1]} . (2.2)

Lemma 2.4 Let T be a semihomogeneous Banach space. Then BT is a homogeneous Banach space.

P r o o f. BT is obviously a linear space. We start by showing thatBT is closed in T : Let {fn}n be a sequence
in BT with fn → f and let ε > 0. Furthermore, let x0 ∈ [−1, 1], and choose N ∈ N such that ‖fN − f‖T < ε

3 .
Then ‖TyfN − Tyf‖T ≤ ‖fN − f‖T < ε

3 for all y ∈ [−1, 1]. Fix x1 such that ‖TxfN − Tx0
fN‖T < ε

3 for all
x ∈ B̃(x0, |x1 − x0|) := {x ∈ [−1, 1] : |x− x0| ≤ |x1 − x0|} . It follows that

‖Txf − Tx0
f‖T ≤ ‖Txf − TxfN‖T + ‖TxfN − Tx0

fN‖T + ‖Tx0
fN − Tx0

f‖T

≤ ε

3
+
ε

3
+
ε

3
= ε for all x ∈ B̃(x0, |x1 − x0|).

For a Jacobi polynomial Rn (n ∈ N0), and for x, x0 ∈ [−1, 1] we have that TxRn − Tx0
Rn = (Rn(x) −

Rn(x0))Rn. Since polynomials are continuous and scalar multiplication is a continuous operation, Rn ∈ BT ,
for all n ∈ N0. Property (B4) is clear by the definition of BT . So it remains to show (B3), i.e., x 7→ TxTyf is
continuous for f ∈ BT and for all y ∈ [−1, 1]. But this is true since

‖TxTyf − Tx0
Tyf‖ = ‖TyTxf − TyTx0

f‖ ≤ ‖Txf − Tx0
f‖ x→x0→ 0.

This completes the proof.

Lemma 2.5 Let T be a semihomogeneous Banach space. Then span {Rk : k ∈ N0} = BT .

P r o o f. As {Rk : k ∈ N0} ⊂ BT and BT is closed, it is sufficient to show that BT ⊂ span {Rk : k ∈ N0}.
This is true since BT is a homogeneous Banach space, which implies that the Rk are total by Corollary 2.3.

Corollary 2.6 In a semihomogeneous Banach space T, BT is the only closed subspace which is a homoge-
neous Banach space.

We call BT the homogeneous Banach space in T.
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Proposition 2.7 Let T be a convolutable semihomogeneous Banach space. Then T ∗ L1(S, π) = BT .

P r o o f. We let B = T ∗ L1(S, π). Since T is convolutable we can regard T as an Banach-L1(S, π)-module.
Now Cohen’s module factorization theorem implies that B is a closed subspace of T . Since Rn = hnRn ∗
Rn ∈ T ∗ L1(S, π) the polynomials are in B. For f ∈ B and g ∈ L1(S, π) we use Tx(f ∗ g) = f ∗ Txg
∈ T ∗ L1(S, π) = B to show that

‖Tx(f ∗ g)− Tx0
(f ∗ g)‖T = ‖f ∗ Txg − f ∗ Tx0

g‖T ≤ ‖Txg − Tx0
g‖L1‖f‖T .

The right hand expression approaches 0, as x → x0 in S, since L1(S, π) is a homogeneous Banach space.
Therefore BT = span {Rk : k ∈ N0} ⊂ B ⊂ BT .

3 Jacobi Differential Operator

We introduce a closed, densely defined unbounded operator in a homogeneous Banach space B here. We call
that operator the Jacobi differential operator in B. For the spaces Lp(S, π), 1 ≤ p <∞, and C(S), this operator
has been considered by Bavinck [1] and Pawelke [17]. In [10], this operator is treated on L2(S, π). We need this
operator in Section 4.2, where we characterize Lipschitz spaces as intermediate spaces w.r.t. B and the domain
of this operator.

Definition 3.1 Let B be a homogeneous Banach space. We let

DA =
{
f ∈ B : ∃ g ∈ B such that ǧ(n) = −n(n+ α+ β + 1)f̌(n) for all n ∈ N0

}
and define the Jacobi Differential Operator A : DA → B, f 7→ g.

Proposition 3.2 Let B, DA and A be as in Definition 3.1. Then A : DA → B is a closed and densely
defined linear unbounded operator in B. Its domain DA, with the graph norm ‖f‖DA := ‖f‖B + ‖Af‖B , is a
homogeneous Banach space.

P r o o f. The linearity of A is obvious. For every Jacobi polynomial Rn (n ∈ N0), we have that −n(n+ α+
β + 1)Rn ∈ B. Hence

Rn ∈ DA and ARn = −n(n+ α+ β + 1)Rn, (3.1)

and we see thatA is unbounded. Since the polynomials are dense inB, A is densely defined. In order to show that
A is a closed operator, we let (fn, Afn)n be a sequence in the graph GA of A with (fn, Afn)→ (f, g) in B×B.
As the mappingB → C, h 7→ ȟ(k), is continuous we have f̌n(k)→ f̌(k) and−k(k+α+β+1)f̌n(k)→ ǧ(k).
Thus,

ǧ(k) = lim
n→∞

−k(k + α+ β + 1)f̌n(k) = −k(k + α+ β + 1)f̌(k).

It follows that f ∈ DA and Af = g.
We now show that DA is a homogeneous Banach space. From the definition of the graph norm and the fact

that A is a closed operator, we can deduce that (DA, ‖ ‖DA) is a Banach space contained in L1(S, π) and that
for f ∈ DA we have ‖f‖DA ≥ ‖f‖B ≥ ‖f‖L1(S,π). So (B2) is fulfilled, and (B1) follows from (3.1). We show
(B3): Suppose that f ∈ DA. Then Af ∈ B, and since B is a homogeneous Banach space we can show that
TxAf ∈ B, for all x ∈ S, as follows: By Fourier expansion, we obtain that, for all n ∈ N0,

F(TxAf)(n) = −n(n+ α+ β + 1)Rn(x)f̌(n) = −n(n+ α+ β + 1)F(Txf)(n).

This implies Txf ∈ DA, and ATxf = TxAf, for all x ∈ S. Since B is a homogeneous Banach space, we get

‖Txf‖DA = ‖Txf‖B + ‖ATxf‖B ≤ ‖f‖B + ‖TxAf‖B ≤ ‖f‖DA .

Furthermore, for x0 ∈ S,

‖Txf − Tx0f‖DA = ‖Txf − Tx0f‖B + ‖TxAf − Tx0Af‖B → 0

as x→ x0, which yields (B4).

Copyright line will be provided by the publisher



6 A. Weinmann and R. Lasser: Jacobi Lipschitz Spaces

It is well known that the Jacobi polynomials fulfill the equality

d

dx

(
w(x)(1− x2)

d

dx
R(α,β)
n (x)

)
= −n(n+ α+ β + 1)w(x)R(α,β)

n (x). (3.2)

The following goes back to Löfström and Peetre, see [16]. It also works for general homogeneous Banach spaces.
Integrating (3.2) with bounds in the interior of the interval and letting the upper bound to 1 yields for x ∈ S

Rn(1)−Rn(x) = n(n+ α+ β + 1)
∫ 1

x
1

w(t)(1−t2)
∫ 1

t
Rn(s)w(s) dsdt. (3.3)

We consider the function θ : [0, 1]× [0, 1]→ [0,∞[,

θ(x, s) =

{
1

cα,β

∫ s
x

1
w(t)(1−t2) dt for 1 > s > x,

0 otherwise,

and the function C : [0, 1] → [0,∞[, C(x) =
∫ 1

x
θ(x, s) dπ(s). With the help of Tonnelli’s theorem it follows

that s 7→ θ(x, s) is π-integrable, and a direct calculation yields the estimate:

m(1− x) ≤ C(x) ≤M(1− x), for all x ∈ [0, 1], (3.4)

where m and M are positive constants.
Lemma 3.3 Let B be a homogeneous Banach space. Then, for all x ∈ [0, 1[, the operator Ix : B → B,

Ixf :=
1

C(x)

∫ 1

x

θ(x, s)Tsf dπ(s), (3.5)

is a linear contraction on B.

P r o o f. Since B is a homogeneous Banach space and s 7→ θ(x, s) is π-integrable, the integrand is strongly
measurable. Furthermore,

‖Ixf‖B ≤
1

C(x)

∫ 1

x

θ(x, s)‖Tsf‖B dπ(s) ≤ ‖f‖B .

Thus Ixf ∈ B and Ix is a contraction. Ix is linear, since so are translation and integral.

Lemma 3.4 Let B be a homogeneous Banach space and A be the Jacobi differential operator in B. Let
furthermore {Ix}0≤x<1 be as defined in Lemma 3.3. Then the following statements are true for any x ∈ [0, 1[,

1. For any h ∈ DA, IxAh = Txh−h
C(x) .

2. For any f ∈ B, Ixf ∈ DA and Txf − f = C(x)AIxf.

3. The linear operator A ◦ Ix : B → B is bounded, and A ◦ Ix = Ix ◦A on DA.

P r o o f. Beginning with 2., we show that Ixf ∈ DA. We calculate the Fourier coefficients of C(x)Ixf . For
all n ∈ N0, we get

− n(n+ α+ β + 1)F(C(x)Ixf)(n) = −n(n+ α+ β + 1)
∫ 1

x
θ(x, s)F(Tsf)(n) dπ(s)

= −n(n+ α+ β + 1)
∫ 1

x
θ(x, s)Rn(s) dπ(s)f̌(n)

= − [Rn(1)−Rn(x)] f̌(n) = F(Txf − f)(n),

where we used (3.3) for the last but one equality. Since Txf − f ∈ B we have C(x)Ixf ∈ DA. The uniqueness
theorem guarantees that AC(x)Ixf = Txf − f . The first statement of 3. is a consequence of

‖AIxf‖B =
1

C(x)
‖Txf − f‖B ≤

2

C(x)
‖f‖B .

An analogous calculation of the Fourier coefficients of Ah ∈ B instead of f yields 1. For h ∈ DA, we combine
1. and 2. and obtain that C(x)IxAh = Txh− h = C(x)AIxh. This proves the remainder of 3.

Copyright line will be provided by the publisher



mn header will be provided by the publisher 7

4 Lipschitz Spaces

Lipschitz spaces w.r.t. Jacobi translation were defined in [10] in the following way. Let B be a homogeneous
Banach space and assume that 0 < λ < 1. We define

LipB(λ) =

{
f ∈ B : sup

x∈[−1,1[

‖Txf − f‖B
(1− x)λ

<∞

}
.

LipB(λ) becomes a Banach space with the norm ‖f‖Lip = ‖f‖B + supx∈[−1,1[
‖Txf−f‖B
(1−x)λ . For the special choices

B = Lp(S, π), with 1 ≤ p < ∞, and B = C(S) these spaces are certain Jacobi-Besov spaces. We exemplarily
refer to Bavinck [1], Runst and Sickel [18], and Kyriazis et al. [13] for further work on function spaces related to
Jacobi polynomials.

The space lipB(λ) is the subspace of LipB(λ) given by

lipB(λ) =
{
f ∈ B : lim

x→1

‖Txf−f‖B
(1−x)λ = 0

}
.

Proposition 4.1 Let B be a homogeneous Banach space and 0 < λ < 1. Then LipB(λ) is a convolutable
semihomogeneous Banach space and the closed subspace lipB(λ) is a homogeneous Banach space.

P r o o f. In [10], it is shown that lipB(λ) is a homogeneous Banach space. It is implicitly proved there that
LipB(λ) is a Banach space which is contained in L1(S, π), and that lipB(λ) is a closed subspace. It also follows
from [10] that Rn ∈ lipB(λ) ⊂ LipB(λ), and that, for f ∈ LipB(λ), and x, y ∈ S, we have ‖Ty(Txf) −
Txf‖B ≤ ‖Tyf − f‖B . This implies Txf ∈ LipB(λ) with ‖Txf‖Lip ≤ ‖f‖Lip.

To see that LipB(λ) is convolutable, let f ∈ LipB(λ) and g ∈ L1(S, π). Then,

‖Tx(f ∗ g)− f ∗ g‖B = ‖(Txf − f) ∗ g‖B ≤ ‖Txf − f.‖B‖g‖L1

This implies f ∗ g ∈ LipB(λ), and ‖f ∗ g‖Lip ≤ ‖f‖Lip‖g‖L1 .

From Lemma 2.5, Corollary 2.6 and Proposition 2.7 we can deduce the following relation between the little
and big Lipschitz spaces.

Corollary 4.2 Let B be a homogeneous Banach space and 0 < λ < 1. Then lipB(λ) is the homogeneous
Banach space in LipB(λ), in particular lipB(λ) is the closure of the polynomials in LipB(λ). Furthermore,

LipB(λ) ∗ L1(S, π) = lipB(λ). (4.1)

4.1 Equivalent norms based on a modulus of continuity

For a homogeneous Banach space B and t ∈ [−1, 1[, a modulus of continuity of f ∈ B is given by

wB(f, t) = sup
t≤x≤1

‖Txf − f‖B . (4.2)

Obviously, wB(f, t) is a finite non-negative number. For fixed f ∈ B, t 7→ wB(f, t), is non-increasing in S, and
wB(f, t) → 0 for t ↑ 1. It is also easily seen that wB(f + g, t) ≤ wB(f, t) + wB(g, t). This justifies calling
wB modulus of continuity. Note that this modulus of continuity does not fit into the framework of the book of
Ditzian and Totik [9], which is due to the Jacobi translation employed in its definition.

Definition 4.3 We say that a sequence d = {dn}n∈N0
of real numbers is of type [E], if d0 = −1, d is strictly

increasing, limn→∞ dn = 1, and there is Cd > 0 such that 1−dn
1−dn+1

≤ Cd for all n ∈ N0.

We define, for ε > 0, the sequence d by dn := 1− 2( 1
1+ε )n (n ∈ N0). Then d is a sequence of type [E] with

Cd = supn∈N0

1−dn
1−dn+1

≤ 1 + ε. (4.3)

Hence we can choose Cd arbitrarily close to 1.
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8 A. Weinmann and R. Lasser: Jacobi Lipschitz Spaces

Lemma 4.4 Let B be a homogeneous Banach space, λ ∈]0, 1[, and d = {dn}n∈N0
be a sequence of type [E].

Then,

‖f‖′Lip = ‖f‖B + supt∈[−1,1]
wB(f,t)
(1−t)λ , and ‖f‖Lip,d = ‖f‖B + supn∈N0

wB(f,dn)
(1−dn)λ

define equivalent norms on LipB(λ). We have the equality ‖f‖′Lip = ‖f‖Lip and 1
Cd
‖f‖Lip ≤ ‖f‖Lip,d ≤

‖f‖Lip, for all f ∈ LipB(λ). The space lipB(λ) is characterized by

lipB(λ) =
{
f ∈ B : limt↑1

wB(f,t)
(1−t)λ = 0

}
=
{
f ∈ B : lim

n→∞
wB(f,dn)
(1−dn)λ = 0

}
.

P r o o f. It is clear that ‖ · ‖′Lip and ‖ · ‖Lip,d are norms on LipB(λ), and that ‖ · ‖Lip ≤ ‖ · ‖′Lip and ‖ · ‖Lip,d ≤
‖ · ‖′Lip. For t ∈ [−1, 1[ and f ∈ LipB(λ), we have wB(f,t)

(1−t)λ = supt≤x<1
‖Txf−f‖
(1−t)λ ≤ supt≤x<1

‖Txf−f‖
(1−x)λ . It

follows that ‖f‖′Lip ≤ ‖f‖Lip. Finally, choose t ∈ [−1, 1[. Then there is N ∈ N such that dN < t ≤ dN+1, and
we have

wB(f,t)
(1−t)λ ≤

wB(f,dN )
(1−dN+1)λ

≤ 1−dN
1−dN+1

wB(f,dN )
(1−dN )λ

≤ supn∈N0

1−dn
1−dn+1

wB(f,dn)
(1−dn)λ ≤ Cd‖f‖Lip,d,

where we used the monotonicity of the modulus of continuity. Therefore, ‖f‖Lip ≤ Cd‖f‖Lip,d. The statement
on the little Lipschitz spaces is clear.

4.2 Lipschitz spaces as Intermediate Spaces

The purpose of the following is to characterize Lipschitz spaces in terms of K-intermediate spaces. References
concerning interpolation are the books of Bergh and Löfström [3] and of Triebel [20].

We begin by introducing Peetre’s K-functional. We consider a Banach space X and let Y ⊂ X be a normal-
ized Banach subspace of X, i. e. a linear subspace which becomes a Banach space with its norm ‖ · ‖Y such that
‖f‖X ≤ ‖f‖Y for all f ∈ Y. Then the K-functional KX,Y : X×]0, 1]→ [0,∞[ is given by

KX,Y (f, t) := inf
g∈Y

‖f − g‖X + t‖g‖Y . (4.4)

We write K instead of KX,Y when there is no danger of confusion. Information on the K-functional and the
following simple properties can be found e.g. in [6]. For fixed t, K(·, t) is a norm equivalent to ‖ · ‖X with
bounds

t‖f‖X ≤ K(f, t) ≤ ‖f‖X for all f ∈ X. (4.5)

Furthermore, for fixed f ∈ X, the mapping t 7→ K(f, t), is non-decreasing and concave. For h ∈ Y, we have

K(h, t) ≤ t‖h‖Y . (4.6)

We define, for λ ∈]0, 1[,

(X,Y )λ,K =
{
f ∈ X : supn∈N nλK(f, 1

n ) <∞
}
. (4.7)

In [7], Butzer and Scherer denote this space by [X,Y ]+θ,∞,K . They show that (X,Y )λ,K is a Banach space with
the norm ‖f‖λ,K = supn∈N nλK(f, 1

n ). Furthermore, Y ⊂ (X,Y )λ,K ⊂ X with continuous embeddings. In
addition, (X,Y )λ,K is contained in the closure of Y with respect to ‖ · ‖X .

In our setting, the part of the space X above is played by a homogeneous Banach space B, whereas the role
of Y will be taken by the Jacobi differential operator from Section 3. The following proposition is known for
Lp(S, π), 1 ≤ p <∞, and C(S), see [1] and [17].

Proposition 4.5 Let B be a homogeneous Banach space, A : DA → B be the Jacobi differential operator in
B, and DA be equipped with its graph norm. Then there are constants m,M > 0 such that, for all f ∈ B, and
all t ∈ [−1, 1[,

m
(
w(f, t) + 1−t

2 ‖f‖B
)
≤ K(f, 1−t2 ) ≤M

(
w(f, t) + 1−t

2 ‖f‖B
)
. (4.8)
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P r o o f. At first, consider t ∈ [−1, 0]. We can estimate the K-functional from both above and below by a
positive constant times ‖ · ‖B . We can also estimate the modulus of continuity from above by ‖ · ‖B multiplied
with a positive constant. This implies that (4.8) is valid for t ∈ [−1, 0]. So we can restrict to t ∈ [0, 1[ in the
following.

For the remainder of this proof, let mi, resp. Mi, always denote positive constants which are independent of
f ∈ B and t ∈ [0, 1[. We begin with the first inequality. It follows from (4.5) that 1−t

2 ‖f‖B ≤ K(f, 1−t2 ). Thus
it is enough to find m1 > 0 such that, for all f ∈ B,

w(f, t) ≤ m1 K(f, 1−t2 ). (4.9)

For g ∈ DA and x ∈ [0, 1[, Lemma 3.4.1 implies that Txg − g = C(x)IxAg. Ix is a contraction, and we use
(3.4) to find m2, such that

‖Txg − g‖B ≤ C(x)‖Ag‖B ≤ m2(1− x)‖Ag‖B .

Therefore there is m3 > 0 such that w(g, t) = supt≤x≤1 ‖Txg − g‖B ≤ m3
1−t
2 ‖Ag‖B . So, for f ∈ B, and

g ∈ DA, we have, by the properties of the modulus of continuity, that

w(f, t) ≤ w(f − g, t) + w(g, t) ≤ 2‖f − g‖B +m3
1−t
2 ‖Ag‖B

≤ max(2,m3)
(
‖f − g‖B + 1−t

2 ‖g‖DA
)
.

Passing to the infimum with respect to g ∈ DA yields (4.9).
In order to show the second inequality in (4.8), choose f ∈ B. Consider, for t ∈ [0, 1[, the element Itf, where

It is given in Lemma 3.3. From Lemma 3.4.2 we deduce that Itf ∈ DA, and that

Itf − f = 1
C(t)

∫ 1

t

θ(t, s)(Tsf − f) dπ(s).

It follows that

‖Itf − f‖B ≤ 1
C(t)

∫ 1

t

θ(t, s)‖Tsf − f‖B dπ(s) ≤ supt≤s<1 ‖Tsf − f‖B = w(f, t).

We use again (3.4) and find M1 such that

K
(
f, 1−t2

)
≤ ‖Itf − f‖B + 1−t

2 ‖Itf‖DA ≤ w(f, t) + 1−t
2

(∥∥∥ 1
C(t) (Ttf − f)

∥∥∥
B

+ ‖Itf‖B
)

≤ w(f, t) +M1w(f, t) + 1−t
2 ‖f‖B ,

which completes the proof.

Corollary 4.6 Let B be a homogeneous Banach space, λ ∈]0, 1[, A : DA → B be the Jacobi differential
operator in B and DA be equipped with its graph norm. Then

(B,DA)λ,K ∼= LipB(λ), (4.10)

i. e. they are equal as sets and their norms are equivalent. Furthermore, lipB(λ) corresponds to the closed
subspace

(B,DA)0λ,K :=
{
f ∈ (X;DA)λ,K : limn→∞ nλK(f, 1

n ) = 0
}
. (4.11)

P r o o f. Define the sequence d = {dn}n∈N0
of real numbers by dn := 1 − 2

n+1 . Then d is of type [E] and
Lemma 4.4 ensures that ‖ · ‖Lip,d is an equivalent norm on LipB(λ). Now a calculation using Proposition 4.5
yields (4.10). In order to see (4.11) take g ∈ lipB(λ). We have, for all n ∈ N,

nλK
(
g, 1

n

)
≤Mnλw

(
g, 1− 2

n

)
+M 1

n1−λ ‖g‖B ,

where M > 0 is independent of g and n. On the one hand, we get that g ∈ (B,DA)0λ,K , since both summands
on the right-hand side approach zero for n → ∞. On the other hand, if g ∈ (B,DA)0λ,K , (4.8) implies that
nλw

(
g, 1− 2

n

)
→ 0 for n→∞ and Lemma 4.4 tells us that g ∈ lipB(λ).
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10 A. Weinmann and R. Lasser: Jacobi Lipschitz Spaces

5 The Second Dual of lipB(α)

We begin this chapter by showing that the embedding i : (DA, ‖ · ‖DA) → (B, ‖ · ‖B) is compact. Then we
show that the embedding j :

(
(B,DA)0α,K , ‖ · ‖(B,DA)α,K

)
→ (B, ‖ · ‖B) is weakly compact, which allows us

to characterize the second dual of lipB(λ).

Definition 5.1 Let B be a homogeneous Banach space. The Weierstraß semigroup is defined as the family of
operators {Wt}t≥0 given by

Wt : B → B, W0f = f, Wtf = wt ∗ f for t > 0,

where wt =
∑∞
n=1 e

−n(n+α+β+1)tRnhn.

Since hn = O(n2α+1) for n → ∞ and supn∈N0
‖Rn‖L1(S,π) ≤ supn∈N0

‖Rn‖∞ = 1, wt exists as an
element of L1(S, π) for all t > 0 as an absolutely convergent series.

Proposition 5.2 Let B be a homogeneous Banach space. Then the Weierstraß semigroup {Wt}t≥0 is a C0-
semigroup of contractions on B, whose infinitesimal generator equals A, the Jacobi differential operator.

The {wt}t>0 are positive in the ultraspherical case which is a result of Bochner (see Theorem 3.4.3 of [5]).
Gasper pointed out its validity for Jacobi polynomials in [11]. Now it is easy to see that the family {w1/i}i>0

defines a positive approximation kernel and by Corollary 2.3 {Wt}t≥0 is a C0-semigroup of contractions on B.
It can be shown that the infinitesimal generator of {Wt}t≥0 is A, as pointed out by Bavinck [1]. The argument is
similar to the one used by Butzer and Behrens in [6], Theorem 1.5.4. When we denote the infinitesimal generator
by C and take g ∈ DC , then computing Fourier coefficients of Cg yields g ∈ DA, and if we suppose g ∈ DA, we
approximate g in DA by convolution with a polynomial approximation kernel. These polynomials are elements
of DC and since Ap = Cp for every polynomial p, the closedness of C ensures that g ∈ DC .

Recall that a C0-semigroup {Ut}t≥0 in a Banach space is called compact, if for each t > 0 Ut is a compact
operator.

Proposition 5.3 The Weierstraß semigroup {Wt}t≥0 on a homogeneous Banach space B is compact.

P r o o f. We fix t > 0 and show that Wt is compact as the operator-norm limit of operators with finite dimen-
sional range. Therefore, for n ∈ N, we let

w
(n)
t :=

n∑
k=0

e−k(k+α+β+1)tRkhk.

We let W (n)
t operate on B via W (n)

t (f) := w
(n)
t ∗ f. Then W (n)

t (B) ⊂ span0≤k≤n {Rk}, and we have

‖Wt −W (n)
t ‖B→B = sup‖g‖B≤1 ‖wt ∗ g − w

(n)
t ∗ g‖B

≤ sup‖g‖B≤1 ‖wt − w
(n)
t ‖1‖g‖B = ‖wt − w(n)

t ‖1.

But

‖wt − w(n)
t ‖1 =

∥∥∥∑∞

k=n+1
e−k(k+α+β+1)tRkhk

∥∥∥
1

≤ supk∈N ‖Rk‖1 ·
(∑∞

k=n+1
e−k(k+α+β+1)thk

)
,

and since hk = O(k2α+1), the infinite scalar sum converges to zero as n→∞. This completes the proof.

Proposition 5.4 Let B be a homogeneous Banach space and let A : DA → B be the Jacobi differential
operator. Then the embedding i : (DA, ‖ · ‖DA)→ (B, ‖ · ‖B) is compact.

P r o o f. We defineH : (DA, ‖ ·‖DA)→ (B, ‖ ·‖B), Hx := (I−A)x, which is continuous since ‖Hx‖B =
‖x−Ax‖B ≤ ‖x‖B + ‖Ax‖B = ‖x‖DA . Now consider

(I −A)−1 : (B, ‖ · ‖B)→ (DA, ‖ · ‖B).

By Proposition 5.3 the Weierstraß semigroup is compact and by Proposition 5.2 A is its infinitesimal generator.
From Pazy’s theorem it follows that (I −A)−1 is compact. Hence i = (I −A)−1 ◦H is compact.
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Recall that Gantmacher’s theorem states that a bounded linear operator T : X → Y, where X and Y are
Banach spaces, is weakly compact if and only if its second adjoint T ∗∗ obeys: T ∗∗(X∗∗) ⊂ Q(Y ), Q denoting
the canonical embedding.

The following essentially uses adaptions of interpolation techniques used by Beauzamy in [2], chapitre II,
there attributed to W. J. Davis, T. Figiel, W. B. Johnson and A. Pelczynski.

Proposition 5.5 LetB be a homogeneous Banach space and 0 < λ < 1. If the embedding i : (DA, ‖·‖DA)→
(B, ‖ · ‖B) is weakly compact, then

j : (lipB(λ), ‖ · ‖lip)→ (B, ‖ · ‖B), j(f) := f,

is weakly compact.

P r o o f. In this proof KX(r) denotes the closed ball with radius r in the Banach space X. Let f ∈ lipB(λ),
such that ‖f‖lip ≤ 1. By Corollary 4.6 there is a constantC > 0, independent of f, such that for every t ∈ [−1, 1[
there is gt ∈ DA with

( 1−t
2 )−λ‖f − gt‖B + ( 1−t

2 )1−λ‖gt‖DA ≤ C‖f‖lip ≤ C.

Therefore for every t ∈ [−1, 1[ we have

f = f − gt + gt ∈ KB(C( 1−t
2 )λ) +KDA(C( 1−t

2 )λ−1). (5.1)

Now we consider the balls in (5.1) as subsets of B∗∗ via the canonical embedding Q. By assumption, the
closure of KDA(C( 1−t

2 )λ−1) in B is weakly compact, hence its image under Q is weak-∗-compact in B∗∗.
Since addition is weak-∗-continuous and KB∗∗(C( 1−t

2 )λ) is weak-∗-compact, we get that KB∗∗(C 1−t
2 )λ +

Q(KDA(C( 1−t
2 )λ−1)) is weak-∗-compact, in particular weak-∗-closed. Hence it follows that

Q(Blip(1))
w∗

⊂
⋂

t∈[−1,1[
KB∗∗(C( 1−t

2 )λ) +Q
(
KDA(C( 1−t

2 )λ−1)
)

⊂
⋂

t∈[−1,1[
KB∗∗(C( 1−t

2 )λ) +Q(B) = Q(B).

The weak-∗-continuity of j∗∗ and Goldstine’s theorem yield

j∗∗(Blip∗∗(1)) = j∗∗(Qlip(Blip(1))
w∗

) ⊂ Q(j(Blip(1)))
w∗

⊂ Q(B).

This completes the proof using Gantmacher’s theorem.

In the following we factor the embeddings of our Lipschitz spaces into the homogeneous Banach space through
a sequence space of suitably chosen Banach spaces. For this purpose we consider a sequence of Banach spaces
{Xn, ‖ ‖n}n∈N. We define(∑

n∈N
Xn

)
∞

:= {{xn}n∈N : xn ∈ Xn, supn∈N ‖xn‖n <∞} .

(
∑
n∈NXn)∞ is a Banach space and(∑

n∈N
Xn

)
0

:=
{
{xn}n∈N ∈

(∑
n∈N

Xn

)
∞

: limn∈N ‖xn‖n = 0
}

is a closed subspace. The p-sums (
∑
n∈NXn)p shall be defined analogously for 1 ≤ p <∞. Similar to the scalar

case, dualities can be implemented as follows:(∑
n
Xn

)∗
0
→
(∑

n
X∗n

)
1
, x∗ 7→

{
x∗|(0,...,0,Xn,0,...)

}
n∈N , and(∑

n
X∗n

)∗
1
→
(∑

n
X∗∗n

)
∞
, x∗∗ 7→

{
x∗∗|(0,...,0,X∗

n,0,...)

}
n∈N .
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12 A. Weinmann and R. Lasser: Jacobi Lipschitz Spaces

Under these identifications the canonical embedding from (
∑
n∈NXn)0 into its bidual reads(∑

n∈N
Xn

)
0
→
(∑

n
X∗∗n

)
∞
, {xn}n∈N 7→ {Qxn}n∈N.

We recall the following well known facts. If T is a topological isomorphism from a Banach space X into a
Banach space Y, then so is T ∗∗ : X∗∗ → Y ∗∗ which has image T (X)⊥⊥ = Q(T (X))

w∗
. Furthermore, if there

are bounds C, c > 0 such that c‖f‖ ≤ ‖Tf‖ ≤ C‖f‖ for all f ∈ B, then also c‖f∗∗‖ ≤ ‖T ∗∗f∗∗‖ ≤ C‖f∗∗‖
for all f∗∗ ∈ B∗∗.

Theorem 5.6 Let B be a homogeneous Banach space. Then

lipB(λ)∗∗ ∼= LipB(λ)

with an isometric isomorphism.

We split the proof into several parts. Notation and definitions once introduced in one statement will be used
in the following ones without reference. B shall always denote a homogeneous Banach space and we always
assume that 0 < λ < 1.

For ε > 0, we consider a sequence d = {dn}n∈N0
of type [E] with Cd ≤ 1 + ε. We let Fn (n ∈ N) be the

space B equipped with the norm

‖ · ‖Fn =
1

2n
ε‖ · ‖B +

wB(·, dn−1)

(1− dn−1)λ
.

We define

Fd,ε = B ⊕1

(∑
n∈N

Fn

)
0
. (5.2)

Here ⊕1 denotes the l1-sum of the two Banach spaces. We denote elements in Fd,ε by {fn}n∈N0
, where f0 ∈ B

and {fn}n∈N ∈
(∑

n∈N Fn
)
0
.

Lemma 5.7 Let ε > 0, and let the sequence d = {dn}n∈N0 be of type [E] with Cd ≤ 1 + ε. Then

φd,ε : LipB(λ)→ Fd,ε, f 7→ (f, (f, ..., f, ...)),

is a topological isomorphism and, for all f ∈ LipB(λ),

1
1+ε‖f‖Lip ≤ ‖φd,εf‖Fd,ε ≤ (1 + ε)‖f‖Lip. (5.3)

The same is valid for the restriction of φd,ε to lipB(λ), which we denote by ϕd,ε.

P r o o f. By Lemma 4.4 we have that 1
1+ε ‖f‖Lip ≤ ‖f‖Lip,d ≤ ‖f‖Lip. Since ‖f‖Lip,d ≤ ‖φd,εf‖Fd,ε

≤ (1 + ε)‖f‖Lip,d, we get that (5.3) holds true.

We let

πd,ε : Fd,ε → B, (f0, (f1, ..., fn, ...)) 7→ f0.

We identify the dual and second dual of Fd,ε in the way pointed out above.
Lemma 5.8 For the second adjoint of ϕd,ε, we have that

im(ϕ∗∗d,ε) = {(Qf, (..., Qf, ...)) : f ∈ LipB(λ)}. (5.4)

P r o o f. Via identification, we get F ∗∗d,ε = B∗∗ ⊕1

(∑
n∈N F

∗∗
n

)
∞ . We let Fconst be the constant sequences

in B∗∗ ⊕1

(∑
n∈N F

∗∗
n

)
∞ . We start out by showing that im(ϕ∗∗d,ε) ⊂ Fconst. To this end we show that Fconst is

weak-∗-closed. Let accordingly x(i)∗∗ → x∗∗ be a weak-∗-convergent net in Fconst with limit x∗∗. For f∗ ∈ B∗,
and n1, n2 ∈ N with n1 6= n2,we choose two one-peak-sequences {x∗n}n∈N0 , {y∗n}n∈N0 ∈ B∗⊕∞

(∑
n∈N0

F ∗n
)
1
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such that {x∗n}n∈N0
= {δnn1

f∗}n∈N0
and {y∗n}n∈N0

= {δnn2
f∗}n∈N0

. Here δ is the Kronecker symbol. We get
that

x∗∗n1
f∗ = limi∈I x

(i)∗∗
n1

f∗ = limi∈I x
(i)∗∗{x∗n}n∈N0 =

= limi∈I x
(i)∗∗{y∗n}n∈N0

= limi∈I x
(i)∗∗
n2

f∗ = x∗∗n2
f∗.

This means that x∗∗ is constant. Hence Fconst is weak-∗-closed. Let j denote the embedding of lipB(λ) into B.
Then j = πd,ε ◦ ϕd,ε, and it follows that j∗∗ = π∗∗d,ε ◦ ϕ∗∗d,ε. Since im(ϕ∗∗d,ε) ⊂ Fconst, we know that π∗∗| im(ϕ∗∗

d,ε)
is

injective and so,

im(ϕ∗∗d,ε) = π∗∗−1| im(ϕ∗∗
d,ε)

(j∗∗(lipB(λ))) ⊂ π∗∗−1| im(ϕ∗∗
d,ε)

(Q(B))

⊂ {(Qf, (..., Qf, ...)) : f ∈ B, ‖f‖B + supn∈N ‖f‖Fn <∞}
= {{Qf}n∈N0

: f ∈ LipB(λ)},

where the first inclusion follows from Proposition 5.3 and Proposition 5.5. Here {Qf}n∈N0
is the sequence

havingQf in every component. For the reverse inclusion in (5.4) let f ∈ LipB(λ). Choose a positive polynomial
approximation kernel {Km}m∈N and define f (m) := Km ∗ f. Then f (m) → f in B and f (m) ∈ lipB(λ), since
f (m) is a polynomial. Furthermore, ‖f (m)‖LipB(λ) ≤ ‖f‖LipB(λ). We intend to show that ϕd,εf (m) is weak-∗-
convergent to {Qf}n∈N0 , which would complete the proof. To that end let f∗ = {f∗i }i∈N0 ∈ B⊕∞

(∑
i∈N F

∗
i

)
1

and δ > 0. Choose K ∈ N such that

∞∑
i=K+1

‖f∗i ‖Fi ≤
δ

4 · ‖φd,εf‖ · (1 + ε)2
.

Because Fi is topologically isomorphic to B for all i ∈ N we can find M ∈ N such that for all i ∈ {1, . . . ,K},
we have

‖f (m) − f‖B + ‖f (m) − f‖Fi ≤
δ

4 · ‖f∗‖
for all m ≥M.

We obtain, for m ≥M,

{Qf}n∈N0(f∗)− (Qϕd,εf
(m))(f∗) =

∣∣∣∑∞

i=0
f∗i (f)−

∑∞

i=0
f∗i (f (m))

∣∣∣
≤
∣∣∣∑∞

i=K+1
f∗i (f)

∣∣∣+

∣∣∣∣∑K

i=0
f∗i (f − f (m))

∣∣∣∣+
∣∣∣∑∞

i=K+1
f∗i (f (m))

∣∣∣ .
We estimate the first summand by∣∣∣∑∞

i=K+1
f∗i (f)

∣∣∣ ≤ (∑∞

i=K+1
‖f∗i ‖Fi

)
supi≥K+1 ‖f‖Fi ≤ δ

4 ‖φd,εf‖‖φd,εf‖ ≤
δ
4 ,

the second summand by∣∣∣∣∑K

i=0
f∗i (f − f (m))

∣∣∣∣ ≤ δ
2·‖f∗‖ · ‖f

∗‖ ≤ δ
2 ,

and the last summand using (5.3) by∣∣∣∑∞

i=K+1
f∗i (f (m))

∣∣∣ ≤ (∑∞

i=K+1
‖f∗i ‖Fi

)
supK+1≤i ‖f (m)‖Fi

≤ δ
4‖φd,εf‖

1
(1+ε)2 ‖ϕd,εf

(m)‖ ≤ δ
4 .

Altogether, {Qf}n∈N0
(f∗) −(Qϕd,εf

(m))(f∗) ≤ δ. This completes the proof.
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Proposition 5.9 The mapping

j∗∗ : lipB(λ)∗∗ → LipB(λ)

is an isometric isomorphism.

P r o o f. Let f∗∗ ∈ lipB(λ)∗∗ and ε > 0. Choose Fd,ε according to Lemma 5.7, such that 1
1+ε‖g‖ ≤ ‖φd,εg‖

≤ (1 + ε)‖g‖ for all g ∈ LipB(λ). In particular, these inequalities are valid for lipB(λ). By the properties of
second adjoints, we obtain that 1

1+ε‖f
∗∗‖ ≤ ‖ϕ∗∗d,εf∗∗‖ ≤ (1 + ε)‖f∗∗‖. If we denote the right hand space of

(5.4) by Y and consider φ−1d,ε : Y → LipB(λ), y 7→ φ−1d,εy, we get by using (5.3) that, for all y ∈ Y, 1
(1+ε)‖y‖

≤ ‖φ−1d,εy‖ ≤ (1 + ε)‖y‖. Furthermore, j∗∗ = φ−1d,ε ◦ ϕ∗∗d,ε, and it follows that

1
(1+ε)2 ‖f

∗∗‖ ≤ ‖j∗∗f∗∗‖ ≤ (1 + ε)2‖f∗∗‖.

Since ε has been arbitrary, the proof is complete.
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