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Overview

An algorithm for TV minimization for manifold-valued data (joint work with
L. Demaret and M.Storath)

Second order TV type functionals for S1-valued data (joint work with R.
Bergmann, F. Laus, G. Steidl)

Potts and Blake-Zisserman functionals for manifold-valued signals with a
few jumps (joint work with L. Demaret and M.Storath)
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Manifold-valued data in DTI
• In diffusion tensor imaging (DTI)

(Basser et al. ’94) the data are
positive(-definite) matrices.

• It is reasonable (cf. Pennec et al. ’2004) to
equip Posn with the Riemannian
metric

gP(A ,B) = trace(P−
1
2 AP−1BP−

1
2 ),

P positive and A ,B symmetric.

• Posn with the metric gP is a Cartan
Hadamard manifold (complete,
nonpositive sectional curvature,
simply connected).

Positive Matrices visualized as ellipsoids.

• log and exp can be computed explicitly by

logP Q = P
1
2 log(P−

1
2 QP−

1
2 )P

1
2 , expP A = P

1
2 exp(P−

1
2 AP−

1
2 )P

1
2 .
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TV functionals for manifold-valued data

We consider the variational denoising problem given by the (discrete,
anisotropic, bivariate) functionals

Fα(u) =
∑

i,j

dist(ui , fi)p + α
∑

i,j

dist(uij , ui−1,j)
q + α

∑
i,j

dist(uij , ui,j−1)
q,

with data f and p, q ≥ 1.

• Choosing q=1 corresponds to (anisotropic) TV minimization/ROF
model in Lagrange form (Rudin, Osher, Fatemi ’90).

• Choose the Riemannian distance dist to obtain the corresponding
functionals for manifold-valued data.

• Increase anisotropy by additionally considering diagonals, knight
moves, . . .
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TV denoising on real DTI data (Camino project, Cook et. al. ’06)

Real data Our method for `2 − TV
α = 0.11.
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Minimization algorithms - TV problem

• Idea: Write (for simplicity univariate, multivarite analogous):

F(u) = γ
∑

i
dist(ui , ui−1)

q +
∑

j
dist(uj , fj)p =

∑
i
Fi(u) + G(u),

where Fi(u) = γ dist(ui , ui−1)
q, G =

∑
j
dist(uj , fj)p .

• Apply the cyclic proximal point algorithm (Bacak, Bertsekas) : Iterate the
proximal mappings (Moreau) of G and Fi , i = l, . . . , r ,

proxλFi
(u) = arg min

v

1
2 dist(u, v)2 + λFi(v).

• Central Point: The proximal mappings of Fi ,G can be computed
explicitely (next slide).
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Minimization algorithms - TV problem
Minimize F(u) =

∑
i Fi(u) + G(u),

Fi(u) = γ dist(ui , ui−1)
q, G =

∑
j
dist(uj , fj)p .

• The proximal mapping of G is explicitly given by

proxλG(u)i = [ui , fi]t , t =

 2λ
(1+2λ)dist(ui , fi) for p= 2,

min(λ, dist(ui , fi)) for p= 1.

(“Soft thresholding” for p = 1.)
• The proximal mapping of Fi is explicitly given by (Demaret, Storath, W.)

proxλFi
(u)j =


uj if j , i, i − 1,
[ui , ui−1]t if j = i,
[ui−1, ui]t if j = i − 1,

t = γλ
(2+2γλ)dist(ui , ui−1) for q=2, t = min(λγ, 1

2 dist(ui , ui−1)) for q=1.
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Minimization algorithms - TV problem
Minimize F(u) =

∑
i Fi(u) +

∑
i Gi(u),

Fi(u) = γ dist(ui , ui−1)
q, Gi = dist(ui , fi)p .

• A parallel proximal point algorithm: Calculate the proximal
mappings of Fi ,Gi at u(k)

u(k+1)
i = proxλFi

(u(k)), u(k+1)
n+i = proxλGi

(u(k)),

and then average them using intrinsic means (Cartan, Frechet, Karcher, . . .)

v =

u(k+1) = arg min
u

∑
i
dist(u, u(k+1)

i )2.

• To compute the minimizer, we use the gradient descent (Karcher)

vnew = expvold
( 1

N

∑N

i=1
logvold

u(k+1)
i ).

• Fast Variant: Approximate the mean by iterated geodesic averages.
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Synthetic DTI example

Synthetic DT image Rician noise, σ = 90.

`2-TV (our cyclic PPA) `2-TV (our parallel PPA)
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Analytic Results

Theorem (Demaret, Storath, W.)
In a Cartan-Hadamard manifold (complete, simply connected,
nonpositive sectional curvature) the proposed algorithms (cyclic, parallel
and the parallel variant with approximative mean computation) for Lp-TV
minimization converge towards a global minimizer.

Sceleton of proof:
• Proof that in a connected, complete Riemannian manifold, the

proximal mappings of the first differences and the distances are
given by the formulas derived above.

• For the cyclic PPA apply the convergence result of Bacak (Bacak ’14).
• For the parallel PPAs base on techniques used in (Bacak ’14) and find

suitable modifications.
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Denoising on the LCh color model (S1 × R2).

Synthetic image Gaussian noise (PSNR: 15.64).

`2-TV on RGB (PSNR:23.92) `2-TV on LCh (PSNR:32.19)
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Denoising S2 data.

Original

Von Mises-Fisher noise (κ = 12.7) `1-TV regularization
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Denoising SO3 data.
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Denoising inSAR data

Real data L2-TV denoising

L1-TV denoising TV with Huber data term
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Part II:

Second order TV type functionals
for S1-valued data
(joint work with R. Bergmann, F. Laus, G. Steidl)
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Second order TV for S1 valued data

• Second order TV type functional for real-valued data:

F(u) = ‖u − f‖22 + α‖∇1u‖1 + β‖∇2u‖1.

Here,
∇2u(i) = u(i − 1) − 2u(i) + u(i + 1).

• Question: What are second differences for S1 valued data?

• Idea: Translate

∇2u(i) = (u(i − 1) − u(i)) + (u(i − 1) − u(i))

to the manifold setting:

∇2u(i) = exp−1
u(i) u(i − 1) + exp−1

u(i) u(i + 1).

• Problem: These second differences are not continuous in
ui−1, ui , ui+1.
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Second order TV for S1 valued data

• Alternative: View ui ∈] − π, π] as real-valued data and define the
absolute cyclic difference

d2(fi−1, fi , fi+1) = min
k ,l,m=−1,0,1

|∇2(fi−1 + k2π, fi + l2π, fi+1 + m2π)|

These differences are continuous in fi−1, fi , fi+1.
• Equivalent: Consider all liftings and take the minimal difference on

the lifted R-valued data.
• For nearby fi−1, fi , fi+1 the manifold and the lifting definition agree.

• The proximal mappings for d2 can be computed explicitely (Bergmann,

Laus, Steidl, W. ’14): for w = (1,−2, 1)T , and |〈f ,w〉| < π,

proxλd2
(f) = (f − swm)2π, m = min

(
λ, 〈f ,w〉
‖w‖22

)
, s = sign〈f ,w〉.

• All ingredients for the cyclic proximal point algorithm are available.
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Convergence of the cyclic proximal point algorithms

Theorem (Bergmann, Laus, Steidl, W., 2014)
For data f with nearby data items and small enough parameters α, β, the
cyclic proximal point algorithm for second order TV type minimization
converges to a minimizer.

• What nearby means and α, β can be quantified.

Idea of proof:
• Lift the setting to the covering space R.
• For R-valued data we have convergence and the distance of the

iterates can be estimated basing on (Bacak, Bertsekas).
• Lifting commutes with the proximal mappings and all other relevant

operations for the considered data.
• Conclude nearness for S1 data and derive convergence.
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Second order TV minimization - synthetic example.
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Noisy Second order TV.
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Denoising the H channel in HSV space.

Image Noisy hue

hue denoising on R hue denoising on S1
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Second order TV for real SAR data of Mt. Vesuvius.
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Original Second order TV denoising.
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Part III:

Potts and Blake-Zisserman
functionals for manifold-valued
signals with a few jumps
(joint work with L. Demaret and M.Storath)
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Potts and Blake-Zisserman functionals for
manifold-valued data

Define (univariate) Potts functionals Pγ for manifold-valued data,

Pγ(u) = γ #{i : ui , ui−1}+
∑

i
dist(ui , fi)p ,

and Blake-Zisserman functionals Bγ for manifold-valued data,

Bγ(u) = γ
∑

i
min(sq, dist(ui , ui−1)

q) +
∑

i
dist(ui , fi)p .
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Example: L2-Potts minimization for DTI data.

Original (synthetic) signal:

Noisy data (Rician noise with σ = 60):

L2-Potts reconstruction:
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Example: Blake-Zisserman vs. Potts.

Original (synthetic) signal:

Rician noise with σ = 50 :

L2-Potts reconstruction:

L2-Blake-Zisserman reconstruction:

25 / 31



TV minimization for manifold data Second order TV type functionals Potts and Blake-Zisserman functionals

Minimization algorithm - Potts problem

Pγ(u) = γ #{i : ui , ui−1}+
∑n

i=1
dist(ui , fi)p → min,

• Algorithm based on dynamic programming.
• Most time consuming: For each subinterval [l, r] calculate

u = arg min
∑r

i=l
dist(u, fi)p ,

(p=2: Riemannian center of mass; p=1: Riemannian median.)

We use (sub-)gradient descent; e.g., for p = 1,

uk+1 = expuk

τk

r∑
i=l

loguk fi
‖ loguk fi‖

 .
Converges for p = 1 when τ ∈ `2 \ `1 (Arnaudon et al. ’11).
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Minimization algorithm - Blake-Zisserman problem

Bγ(u) = γ
∑

i
min(sq, dist(ui , ui−1)

q) +
∑

j
dist(uj , fj)p → min .

• Algorithm based on dynamic programming.
• For each subinterval [l, r] calculate the minimizer of

F(u) = γ
∑

i
dist(ui , ui−1)

q +
∑

j
dist(uj , fj)p

• This is a TV minimization problem (or, more general, `q variation
minimization) for manifold data which can be solved by the
developed methods.
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Minimization algorithms

Theorem (Demaret, Storath, W.)
Let p, q ≥ 1. In a Cartan-Hadamard manifold, our algorithm for the
minimization of the (univariate) Potts functionals Pγ produces a minimizer.

Theorem (Demaret, Storath, W.)
Let p, q ≥ 1. In a Hadamard space, our algorithm for the minimization of
the (inivariate) Blake-Zisserman functionals Bγ produces a minimizer.

• For multivariate data, the Potts and the Blake-Zisserman problem
are NP hard.

• In this case, we use a splitting approach (cf. W., Demaret, Storath ’14).
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Segmentation: real data from the Camino project (Cook et al. ’06)

Edge between neighbouring P,Q ⇐⇒ dist(P,Q) ≥ s (s B.-Z. parameter).

Blake-Zisserman regularization (p, q = 1) with s = 0.67, γ = 4.3.
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Summary

• We have derived algorithms for TV minimization for manifolds.
• We have shown convergence to a minimizer for Hadamard

manifolds.
• We have seen the potential in various applications.
• We have derived an algorithm for second order TV type functionals

for S1 data.
• We have obtained convergence for nearby neighboring data and

shown applications.
• We have obtained algorithms for Potts and Blake-Zisserman

problems for manifold valued data.
• We have seen a segmentation of a real corpus callosum.
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