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Overview

An algorithm for TV minimization for manifold-valued data (joint work with
L. Demaret and M.Storath)

Second order TV type functionals for S'-valued data (joint work with R.
Bergmann, F. Laus, G. Steidl)

Potts and Blake-Zisserman functionals for manifold-valued signals with a
few jumps (joint work with L. Demaret and M.Storath)
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Manifold-valued data in DTI

e In diffusion tensor imaging (DTI) A
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Manifold-valued data in DTI

e In diffusion tensor imaging (DTI) ! : ; : . ; : : : : : : : : : :
(Basser et al. '94) the data are B
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simply connected).

¢ log and exp can be computed explicitly by

Positive Matrices visualized as ellipsoids.
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TV functionals for manifold-valued data

We consider the variational denoising problem given by the (discrete,
anisotropic, bivariate) functionals

Fo(u) = Z dist(u;, ;)P + @ Z dist(uy, ui1j)? + @ Z dist(uy, ujj-1)9,
i i i
with data f and p,g > 1.

e Choosing g=1 corresponds to (anisotropic) TV minimization/ROF
model in Lagrange form (Rudin, Osher, Fatemi '90).
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TV functionals for manifold-valued data

We consider the variational denoising problem given by the (discrete,
anisotropic, bivariate) functionals
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with data f and p,g > 1.

e Choosing g=1 corresponds to (anisotropic) TV minimization/ROF
model in Lagrange form (Rudin, Osher, Fatemi '90).

e Choose the Riemannian distance dist to obtain the corresponding
functionals for manifold-valued data.



TV minimization for manifold data

TV functionals for manifold-valued data

We consider the variational denoising problem given by the (discrete,
anisotropic, bivariate) functionals

Fo(u) = Z dist(u;, ;)P + @ Z dist(uy, ui1j)? + @ Z dist(uy, ujj-1)9,
ij ij ij
with data f and p,g > 1.
e Choosing g=1 corresponds to (anisotropic) TV minimization/ROF
model in Lagrange form (Rudin, Osher, Fatemi '90).

e Choose the Riemannian distance dist to obtain the corresponding
functionals for manifold-valued data.

¢ Increase anisotropy by additionally considering diagonals, knight
moves, ...
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TV denOISIng on I‘ea| DTI data (Camino project, Cook et. al. '06)

a=0.11.
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Minimization algorithms - TV problem
o ldea: Write (for simplicity univariate, multivarite analogous):

Flu) =y ) dist(u; 1)+ Z,- dist(u;, )P = > Fi(u) + G(u),
where  Fi(u) = y dist(u;, ui_1)?, G = Zj dist(uj, £)P.

6/31



TV minimization for manifold data

Minimization algorithms - TV problem

o ldea: Write (for simplicity univariate, multivarite analogous):
Flu) =y ) dist(u; 1)+ Z,- dist(u;, )P = > Fi(u) + G(u),
where  Fi(u) = y dist(u;, ui_1)?, G = Zj dist(uj, £)P.

e Apply the cyclic proximal point algorithm (Bacak, Bertsekas) : Iterate the
proximal mappings (Moreau) of Gand Fj, i = 1,...,r,

prox, (u) = arg min 1dist(u, v)2 + AF;(v).
v

e Central Point: The proximal mappings of F;, G can be computed
explicitely (next slide).
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Minimization algorithms - TV problem
Minimize F(u) = Y; Fi(u) + G(u),
Fi(u) = y dist(u;, ui-1)9, G = Z dist(u;, f;)

e The proximal mapping of G is explicitly given by

ey dist(ui ; for p= 2,
proxX,g(u)i = [ui fi]t, t= (1+2/1) ist(uj, f;) p
min(4, dist(u;, f;))  for p=1.

(“Soft thresholding” for p = 1.)
e The proximal mapping of F; is explicitly given by (Demaret, Storath, W.)

uj ifj#ii—1,
proxg (u); = < [uj, U] if j =1,

[Ul—hUI]t ifj=i-1,

t=aisn

ype functionals Potts and Blake-Zisserm

dist(uj, ui_1) for g=2, t = min(y, 2dlst(u,,u, 1)) for g=1.

an functiol
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Minimization algorithms - TV problem
Minimize F(u) = ¥, Fi(u) + X; Gi(u),

F,'(U) =v diSt(U,', U,'_1)q, G = diSt(U,‘, f,)p
¢ A parallel proximal point algorithm: Calculate the proximal
mappings of F;, G; at u(*)

(k+1)

(k+1)
u; i

= proxe (u¥), Ut = prox,g (u),

and then average them using intrinsic means (Cartan, Frechet, Karcher, ...)

(k+1) _ . . (k+1)\2
u = argumln Zidlst(u, u " )s
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Minimization algorithms - TV problem
Minimize F(u) = ¥, Fi(u) + X; Gi(u),

F,'(U) =v diSt(U,', Uj—q )q’ G = diSt(U,‘, f,)p

¢ A parallel proximal point algorithm: Calculate the proximal
mappings of F;, G; at u(k)

(k+1)

) = prox e (u), up " = prox,g, (u®),

and then average them using intrinsic means (Cartan, Frechet, Karcher, . ..

— k+1) ; : (k+1)y2
v=u = argumln Zidlst(u, u " )s

e To compute the minimizer, we use the gradient descent (Karcher)

N
. 1 (k+1)
Vhew = expvo|d(N Zi:1 logVo\d u; )
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Minimization algorithms - TV problem
Minimize F(u) = ¥, Fi(u) + X; Gi(u),

F,'(U) =v diSt(U,', Uj—q )q’ G = diSt(U,‘, f,)p

¢ A parallel proximal point algorithm: Calculate the proximal
mappings of F;, G; at u(k)

(k+1)

(k+1)
u; i

= proxe (u¥), Ut = prox,g (u),

and then average them using intrinsic means (Cartan, Frechet, Karcher, ...)

— k+1) ; : (k+1)y2
v=u = argumln Zidlst(u, ug " )s

e To compute the minimizer, we use the gradient descent (Karcher)

N
. 1 (k+1)
Vhew = expvo|d(N Zi:1 logVo\d u; )

e Fast Variant: Approximate the mean by iterated geodesic averages.
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Synthetic DTl example

TV minimization for manifold data
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£2-TV (our parallel PPA)
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£2-TV (our cyclic PPA)
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Analytic Results

Theorem (Demaret, Storath, W.)

In a Cartan-Hadamard manifold (complete, simply connected,
nonpositive sectional curvature) the proposed algorithms (cyclic, parallel
and the parallel variant with approximative mean computation) for LP-TV
minimization converge towards a global minimizer.
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Analytic Results

Theorem (Demaret, Storath, W.)

In a Cartan-Hadamard manifold (complete, simply connected,
nonpositive sectional curvature) the proposed algorithms (cyclic, parallel
and the parallel variant with approximative mean computation) for LP-TV
minimization converge towards a global minimizer.

Sceleton of proof:

e Proof that in a connected, complete Riemannian manifold, the
proximal mappings of the first differences and the distances are
given by the formulas derived above.

e For the cyclic PPA apply the convergence result of Bacak (Bacak '14).

o For the parallel PPAs base on techniques used in (Bacak '14) and find
suitable modifications.

10/31
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Denoising on the LCh color model (S x R?).

Synthetic image Gaussian noise (PSNR: 15.64).

(

2-TV on RGB (PSNR:23.92)  ¢2-TV on LCh (PSNR:32.19)

11/31
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Second order TV type functionals

for manifold data
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£'-TV regularization

Von Mises-Fisher noise (xk = 12.7)
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Denoising SO; data.
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Denoising inSAR data

L2-TV denoising

L'-TV denoising TV with Huber data term
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Second order TV type functionals

Part Il:

Second order TV type functionals
for S'-valued data

(joint work with R. Bergmann, F. Laus, G. Steidl)
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Second order TV for S' valued data
e Second order TV type functional for real-valued data:
F(u) = llu—fl5 + allViull + BlIVaulls.

Here,
Vou(i) =u(i—1) —2u(i) + u(i + 1).

¢ Question: What are second differences for S' valued data?

16/31
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Second order TV for S' valued data

e Second order TV type functional for real-valued data:
F(u) = llu = fll3 + allVyulls + BIIV2ulls.

Here,
Vou(i) = u(i—1) =2u(i) + u(i + 1).

¢ Question: What are second differences for S' valued data?
e |dea: Translate

Vu(i) = (u(i - 1) = (i) + (u(i - 1) - u(i))
to the manifold setting:

Vau(i) = expy u(i 1) + expyjy u(i+1).

16/31



Second order TV type functionals

Second order TV for S’ valued data

Second order TV type functional for real-valued data:
F(u) = llu = fll3 + allVyulls + BIIV2ulls.

Here,
Vou(i) = u(i—1) =2u(i) + u(i + 1).

Question: What are second differences for S’ valued data?
Idea: Translate

Vou(i) = (u(i=1) = u(i)) + (u(i— 1) = u(i))
to the manifold setting:
Vau(i) = expy u(i 1) + expyjy u(i+1).

Problem: These second differences are not continuous in
Uj—1, Uj, Ujy1.
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Second order TV for S’ valued data

o Alternative: View u; €] — 7, 7] as real-valued data and define the
absolute cyclic difference

Ao (fioy, fis fip1) = klmn:]i—n1 o IVo(fioy + k27, f; + 127, fipq + m27))|

These differences are continuous in fi_1, f;, fi11.

e Equivalent: Consider all liftings and take the minimal difference on
the lifted R-valued data.

e For nearby fi_4, f;, fi 4 the manifold and the lifting definition agree.
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Second order TV type functionals

Second order TV for S’ valued data

Alternative: View u; €] — &, 7] as real-valued data and define the
absolute cyclic difference

Ao (fioy, fis fip1) = klmn:]i—n1 o IVo(fioy + k27, f; + 127, fipq + m27))|

These differences are continuous in fi_1, f;, fi11.

Equivalent: Consider all liftings and take the minimal difference on
the lifted R-valued data.

For nearby fi_1, f;, i1 the manifold and the lifting definition agree.
The proximal mappings for d> can be computed explicitely (Bergmann,
Laus, Steidl, W. 14): for w = (1,-2,1)7, and [(f, w)| < 7,

Prox,q, (f) = (f — swm)z,, m = min (/l, %) s = sign(f, w).

All ingredients for the cyclic proximal point algorithm are available.
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Convergence of the cyclic proximal point algorithms

Theorem (Bergmann, Laus, Steidl, W., 2014)

For data f with nearby data items and small enough parameters a, 3, the
cyclic proximal point algorithm for second order TV type minimization
converges to a minimizer.

e What nearby means and a, 83 can be quantified.
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Convergence of the cyclic proximal point algorithms

Theorem (Bergmann, Laus, Steidl, W., 2014)

For data f with nearby data items and small enough parameters a, 3, the
cyclic proximal point algorithm for second order TV type minimization

converges to a minimizer.

e What nearby means and a, 83 can be quantified.
Idea of proof:

o Lift the setting to the covering space R.

e For R-valued data we have convergence and the distance of the
iterates can be estimated basing on (Bacak, Bertsekas).

¢ Lifting commutes with the proximal mappings and all other relevant
operations for the considered data.

« Conclude nearness for $' data and derive convergence.

18/31
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Second order TV minimization - synthetic example.

Second order TV.
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3.

hue denoising on R hue denoising on S’

e K &
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Second order TV for real SAR data of Mt. Vesuvius.

ol

Original Second order TV denoising.
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Potts and Blake-Zisserman functionals

Part Ill:

Potts and Blake-Zisserman
functlonals for manifold-valued
signals with a few jumps

(joint work with L. Demaret and M.Storath)

50 /4
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Potts and Blake-Zisserman functionals for
manifold-valued data

Define (univariate) Potts functionals P, for manifold-valued data,

Py(u) =y #{i: ui # ui1) + ZidiSt(Ui, fi)P,

and Blake-Zisserman functionals B, for manifold-valued data,

B,(u)=vy Z min(s9, dist(u;, ui-1)?) + Z dist(u;, f;)

23/31
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Example: L2-Potts minimization for DTI data.

Original (synthetic) signal:

Noisy data (Rician noise with o = 60):

ooso—ssesncascs=feslts| | i) MOOOOOOWWW‘

L2-Potts reconstruction:

24/31
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Example: Blake-Zisserman vs. Potts.

Original (synthetic) signal:

|0 [N WWWWWassssagl)

Rician noise with o =

s T s

L2-Potts reconstruction:

L2-Blake-Zisserman reconstruction:

|1 VNN

25/31
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Minimization algorithm - Potts problem

P(u) =y #{i: U # Uy} + Z; dist(uj, f;)P — min,

¢ Algorithm based on dynamic programming.
» Most time consuming: For each subinterval [/, r] calculate

u = argmin ZL/ dist(u, £;)P,

(p=2: Riemannian center of mass; p=1: Riemannian median.)
We use (sub-)gradient descent; e.g., forp =1,

- Ioguk fl
= ex
Put (Tk Z ilog,« il |
Converges for p = 1 when 7 € £2 \ £' (Amaudon etal.'11).
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Minimization algorithm - Blake-Zisserman problem

B,(u) =y . min(s dist(u;, ui 1)) + Z,- dist(u;, )P — min.

¢ Algorithm based on dynamic programming.
o For each subinterval [/, r] calculate the minimizer of

F(u)=v Zidist(ui, ui—1)? + Z,‘ dist(uj, f;)P

e This is a TV minimization problem (or, more general, £9 variation
minimization) for manifold data which can be solved by the
developed methods.
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Minimization algorithms

Theorem (Demaret, Storath, W.)

Let p,q > 1. In a Cartan-Hadamard manifold, our algorithm for the
minimization of the (univariate) Potts functionals P, produces a minimizer.
Theorem (Demaret, Storath, W.)

Letp,q > 1. In a Hadamard space, our algorithm for the minimization of
the (inivariate) Blake-Zisserman functionals B, produces a minimizer.
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Minimization algorithms

Theorem (Demaret, Storath, W.)

Let p,q > 1. In a Cartan-Hadamard manifold, our algorithm for the
minimization of the (univariate) Potts functionals P, produces a minimizer.
Theorem (Demaret, Storath, W.)

Letp,q > 1. In a Hadamard space, our algorithm for the minimization of
the (inivariate) Blake-Zisserman functionals B, produces a minimizer.

e For multivariate data, the Potts and the Blake-Zisserman problem
are NP hard.

¢ In this case, we use a splitting approach (cf. w., Demaret, Storath '14).

28/31
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Second order TV type functionals

TV minimization for manifold data

Segmentation: real data from the Camino project (cooketal 06)
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Segmentation: real data from the Camino project (cooketal 0s)

Edge between neighbouring P, Q < dist(P, Q) > s (s B.-Z. parameter).
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Blake-Zisserman regularization (p, g = 1) with s = 0.67, y = 4.3.
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Summary

We have derived algorithms for TV minimization for manifolds.

We have shown convergence to a minimizer for Hadamard
manifolds.

We have seen the potential in various applications.

We have derived an algorithm for second order TV type functionals
for S data.

We have obtained convergence for nearby neighboring data and
shown applications.

We have obtained algorithms for Potts and Blake-Zisserman
problems for manifold valued data.

We have seen a segmentation of a real corpus callosum.
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