
Joint Image Reconstruction and Segmentation Using
the Potts Model

Martin Storath1, Andreas Weinmann2,4, Jürgen Frikel3,4,
Michael Unser1

1Biomedical Imaging Group, École polytechnique fédérale de Lausanne,
Switzerland
2Department of Mathematics, Technische Universität München, Germany
3Department of Mathematics, Tufts University, USA
4Research Group Fast Algorithms for Biomedical Imaging, Helmholtz Zentrum
München, Germany

E-mail: martin.storath@epfl.ch, andreas.weinmann@tum.de,
juergen.frikel@helmholtz-muenchen.de, michael.unser@epfl.ch

Abstract. We propose a new algorithmic approach to the non-smooth and non-
convex Potts problem (also called piecewise-constant Mumford-Shah problem) for
inverse imaging problems. We derive a suitable splitting into specific subproblems
that can all be solved efficiently. Our method does not require a priori knowledge
on the gray levels nor on the number of segments of the reconstruction. Further,
it avoids anisotropic artifacts such as geometric staircasing. We demonstrate the
suitability of our method for joint image reconstruction and segmentation from
limited data in x-ray and photoacoustic tomography. For instance, our method
is able to reconstruct the Shepp-Logan phantom from 7 angular views only. We
demonstrate the practical applicability in an experiment with real PET data.

Keywords: Potts model, piecewise-constant Mumford-Shah model, regularization of
ill-posed problems, image segmentation, Radon transform, spherical Radon transform,
computed tomography, photoacoustic tomography, deconvolution.
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1. Introduction

In this paper, we consider ill-posed imaging problems with incomplete data.
Incomplete data are often due to technical restrictions or design issues of the imaging
modality, like in the case of freehand SPECT [80] or limited-angle tomography
[18, 61, 76]. Also health-related considerations lead to incomplete data. For example,
sparse-angle setups are used to reduce radiation doses in x-ray tomography [5]. In
addition to incompleteness, the data is usually corrupted by noise and may also suffer
from blur [40, 51, 71, 83]. Altogether, this makes the reconstruction problems severely
ill-posed which means that small perturbations in the data potentially lead to large
errors in the reconstruction [30, 56, 57, 61]. It may even happen that certain features
(singularities) are invisible from the incomplete data [38, 46, 68]. Consequently, the
quality of reconstruction decreases significantly and one tends to lose fine details.
Nevertheless, one can still try to reconstruct the object at a coarser scale. This is
often of particular interest in medical imaging; for example, the locations of inner
organs might be needed for surgery planning [69].

Classical reconstruction methods perform poorly in limited-data situations.
Better approaches incorporate specific prior assumptions on the reconstruction. They
are typically stated in terms of the minimization of some cost function. A popular
representative is the convex total variation [25, 72]. A recent trend is to use
non-convex regularizers [9, 27, 64, 69]. Although analytically and computationally
more demanding, they give more freedom in the modeling and often yield better
reconstructions [27, 28]. In their seminal work [60], Mumford and Shah introduced a
cost functional on the piecewise-constant functions – now called the piecewise-constant
Mumford-Shah functional – where the length of the discontinuity set is penalized.
This functional has shown good performance, especially for the recovery of geometric
macrostructures from poor data [50, 69, 70]. The piecewise-constant Mumford-Shah
model also appears in statistics and image processing where it is often called Potts
model [12, 13, 14, 66, 81]. The variational formulation of the Potts model is given by

arg minu γ ‖∇u‖0 + ‖Au− f‖22 . (1)

Here, A is a linear operator (e.g., the Radon transform) and f is an element of the
data space (e.g., a sinogram). A mathematically precise definition of the jump term
‖∇u‖0 is rather technical in a spatially continuous setting. However, if u is piecewise-
constant and the discontinuity set of u is sufficiently regular, say, a union of C1 curves,
then ‖∇u‖0 is just the total arc length of this union. In general, the gradient ∇u is
given in the distributional sense and the boundary length is expressed in terms of the
(d− 1)-dimensional Hausdorff measure. When u is not piecewise-constant, the jump
penalty is infinite [70]. The second term measures the fidelity of a solution u to the data
f. The parameter γ > 0 controls the balance between data fidelity and jump penalty.
The Potts model can be interpreted in two ways. On the one hand, if the imaged
object is (approximately) piecewise-constant, then the solution is an (approximate)
reconstruction of the imaged object. On the other hand, since a piecewise-constant
solution directly induces a partitioning of the image domain, it can be seen as joint
reconstruction and segmentation. Executing reconstruction and segmentation jointly
typically leads to better results than performing the two steps successively [50, 69].

The Potts problem is NP-hard [12]. Thus, there is no hope to find a
global minimizer in reasonable time. Nevertheless, due to its importance in image
reconstruction and segmentation, several approximative strategies have been proposed.



Joint Image Reconstruction and Segmentation Using the Potts Model 3

Kim et al. [47] consider an Ambrosio-Tortorelli-type approximation. Bar et al. [4] use a
level-set based active contour method for deconvolution. Ramlau and Ring [69] employ
a related level-set approach for the joint reconstruction and segmentation of x-ray
tomographic images; further applications are electron tomography [48] and SPECT
[50]. The latter authors were the first to investigate the regularizing properties of such
functionals [69, 70]. We elaborate further on Potts regularization in inverse problems
and on existing algorithmic approaches in the sections 1.1 and 1.2, respectively.

In this paper, we first discretize the Potts problem as

u∗ = arg min
u∈Rm×n

γ

S∑
s=1

ωs‖∇psu‖0 + ‖Au− f‖22. (2)

The symbol ∇p denotes finite differences with respect to the displacement vector p so
that∇pu = u(·+p)−u, where p ∈ Z2\{0}. The symbol ‖∇psu‖0 denotes the number of
nonzero entries of ∇psu. The displacement vectors p belong to a neighborhood system
N = {p1, ..., pS} and ω1, ..., ωS are nonnegative weights. The simplest neighborhood
system is made up of the two canonical basis vectors of R2 along with unit weights.
Unfortunately, when refining the grid, this discretization converges to a limit that
measures the boundary in terms of the `1 analogue of the Hausdorff measure [22]. The
practical consequences are unwanted block artifacts in the reconstruction (geometric
staircasing). The addition of diagonal or “knight-move” finite differences (referring to
the moves of a knight in chess) mildens such anisotropy effects [23]. We provide a
general scheme for the proper choice of finite-difference systems and accompanying
weights which allows for arbitrarily good approximations of the Euclidean length.

Based on (2), we propose a new minimization strategy for the Potts problem. Our
key contribution is a particularly suitable splitting of the Potts problem (2) into specific
subproblems. The first subproblem is a classical Tikhonov-regularized problem with a
solution that reduces to a linear system of equations. All the remaining subproblems
can be solved efficiently by dynamic programming [22, 37, 60, 73]. We prove that our
algorithm converges. A major advantage of our method is that neither the number
of segments nor the gray-values of a solution have to be fixed a priori. Further, the
method does not require any initial guess of the solution. Last but not least, it is
highly parallelizable and easy to implement.

We demonstrate the suitability of our method for joint image reconstruction and
segmentation in several setups. We reconstruct from Radon data, which appear
in x-ray tomography (CT) and in positron emission tomography (PET), and from
spherical Radon data, which appear in photoacoustic tomography (PAT). In noise-free
conditions, we achieve almost perfect reconstruction of the Shepp-Logan phantom from
only seven projections (see Figure 1). In the presence of noise, our method provides
high-quality reconstructions of piecewise-constant images from a small number of
projections. On PET data of a physical phantom, we obtain a reliable segmentation
of the anatomic structures. Eventually, we apply our method to the deconvolution of
vector-valued data.

1.1. Potts Regularization in Inverse Problems

In many imaging problems, the imaging operator A is not boundedly invertible.
Examples are the Radon transform and the spherical Radon transform when viewed
as operators on the corresponding L2 spaces. Because of unboundedness, a direct
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(a) Original (256× 256) (b) Rec. from 7 projections of
Radon data
(PSNR: 45.2, MSSIM: 0.996)

(c) Rec. from 7 projections of
spherical Radon data
(PSNR: 51.5, MSSIM: 0.999)

Figure 1 The proposed method yields high quality reconstructions of piecewise-constant
images from highly undersampled Radon as well as spherical Radon data.

inversion (if possible at all) may amplify small perturbations in the data. In order
to attenuate such effects and produce more stable reconstructions, regularization is
needed. A popular approach for regularization is by means of minimizing an energy
functional of the form γJ(u) + ‖Au − f‖22. Here, the second term is the data-fidelity
term while the first term – called the regularizing term – is a penalty that incorporates
a priori knowledge on the solution. Classical regularizations are Besov or Sobolev
seminorms which associate certain smoothness classes with the solution. Less classical
choices are the TV seminorm which leads to solutions of bounded variation. In the
context of sparsity regularization, non-convex functionals are also used as regularizing
terms [16]. The Potts functional (1) fits into this framework by letting J be the
jump penalty. It is non-convex and may be seen as a term that enforces a sparse
gradient. We note that Mumford-Shah approaches (which include Potts functionals)
also regularize the boundaries of the discontinuity set of the underlying signal [44].

The existence of minimizers of (1) is not guaranteed in a continuous domain
setting [36, 35, 70, 74]. For example, if A is a compact convolution operator originating
from a smooth function and data given by the impulse response f = Aδ, then the
associated Potts functional does not have a minimizer [74]. In order to ensure the
existence of minimizers, additional penalty terms such as an Lp (1 < p <∞) term of
the form ‖u‖pp [69, 70] or pointwise boundedness constraints [44] have been considered.
We note that the existence of minimizers is guaranteed in the discrete domain setup
[36, 74].

It is important to verify that the Potts model is a regularization method in the
sense of inverse problems. The first work dealing with this task is [70]. Ramlau and
Ring [70] assume that the solution space consists of non-degenerate piecewise-constant
functions with at most k (arbitrary, but fixed) different values which are additionally
bounded. Under relatively mild assumptions on the operator A, they show stability. In
addition, they give a parameter choice rule and show that the solutions corresponding
to the chosen parameters (which depend on the level of noise) converge to a noise-free
solution as the noise vanishes. This means that the method is a regularizer in the
sense of inverse problems. Related references are [49, 50] and the recent publication
[44] which includes (non-piecewise-constant) Mumford-Shah functionals.
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1.2. Existing Algorithmic Approaches to Potts and Related Problems

The name “Potts model” for (1) has been retained in honor of R.B. Potts [67] who, as
early as 1952, considered related jump penalties in his work in the field of statistical
mechanics. The classical Potts model (A = id) was first introduced in image processing
by Geman and Geman [39] in a statistical framework. Their algorithmic approach is
based on simulated annealing. From a variational-calculus point of view, the problem
was first considered by Mumford and Shah [60]. Ambrosio and Tortorelli [1] proposed
an approximation by elliptic functionals. Currently, popular algorithmic approaches
for the classical case A = id are based on active contours [26, 29], graph cuts [12],
convex relaxations [66, 24], and semi-global matching [43].

The general case of A being a linear operator has been investigated to a lesser
extent. Yet, strategies based on active contours emerge as an important class. The
idea is to parameterize the jump set of u by a set of contours which evolve according
to a deformation force. Active contours are used for A being a convolution operator in
[4] and for A being the Radon transform in [69]. Both use level sets to parameterize
the active contours. A similar method has been applied to joint segmentation of
SPECT/CT data [49, 50]. Level-set methods have also been applied to stabilize sparse-
angle tomography [52]. In [53], the authors use explicitly parameterized contours for
the application to bioluminescence tomography. In general, active contours are quite
flexible as the deformation force can be easily adjusted. Their main disadvantages are
that they require a good guess on the initial contour and a good guess on the expected
number of gray values of the solution.

Graph cuts [12] are a popular strategy to address the classical Potts problem with
A = id. In [74], the inverse problem for a general A is approached by iteratively using a
graph-cut strategy on a classical Potts problem, followed by Tikhonov regularization.
There, the authors apply their algorithm to deconvolution. A drawback of this
approach is that graph cuts need an (a priori) discretization of the codomain of u.
Thus, one needs either a good initial guess on the values that u may take, or a very
fine (and expensive) discretization of the codomain of u.

To circumvent NP hardness [12], the jump penalty is often replaced by the total
variation ‖∇u‖1; see [6, 15, 17, 20, 31, 84] and the references therein. TV minimization
is theoretically and algorithmically easier to access since it is a convex problem. The
theory of compressed sensing gives conditions when the minimizers of the relaxed
problem coincide with those of the original problem [20, 62]. However, the conditions
are relatively restrictive and fail to apply to some problems of practical importance.
In limited-data situations, TV minimizers typically lack sharply localized boundaries
[27, 28]. To sharpen the results of total variation minimization, various techniques
such as iterative reweighting [21], simplex constraints [55], or iterative thresholding
[19] have been proposed.

In order to come closer to the solution of the initial Potts problem, many authors
propose the use of non-convex priors. Chartrand [27] uses priors based on the `p norm
of the gradient, 0 < p < 1, for the reconstruction of MRI-type images. Logarithmic
priors are considered by Bostan et al. [9] for the reconstruction of biomedical images.
Nikolova et al. [63, 64] propose a whole class of non-convex regularizers which are
treated using a graduated non-convexity approach.

Another approach is to transform the Potts problem to an `0 problem [3, 28, 36].
The resulting problem is separable which allows for the application of iterative hard-
thresholding-type algorithms [3, 7, 8, 36]. However, using this transformation comes
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with constraints in form of discrete Schwarz conditions [36] as well as a data term of
the form ‖ABu− f‖22 with a full triangular matrix B. While the initial system matrix
A is typically sparse, the modified matrix AB is not so in general.

1.3. Organization of the Article

In Section 2, we present our splitting approach to the Potts problem. We start by
explaining the basic approach using an anisotropic discretization of (1). Next, we
discuss strategies to get more isotropic discretizations, thus attenuating the unwanted
geometric staircasing effect resulting from an anisotropic discretization. Then, we
present our general algorithm. We briefly discuss more general data terms and prove
the convergence of our algorithm. In Section 3, we apply our method to ill-posed
imaging problems. In particular, we consider Radon data as well as spherical Radon
data. Furthermore, we apply our technique to real PET data. Eventually, we apply
our method to deconvolution problems.

2. A Splitting Approach for the Potts Problem

In this section, we present our splitting approach for the discrete-domain Potts
functional (2). It seems instructive to first describe the basic idea of the splitting
in the simplest case, which is the anisotropic discretization of the length term. This
discretization turns out to be anisotropic as it measures the length of the discrete
boundary in the Manhattan metric, which is the metric induced by the `1 norm on
R2. This typically leads to block artifacts in the reconstruction. To avoid this we derive
appropriate neighborhood systems and corresponding weights such that the discrete
length term in (2) becomes more isotropic. Based on this discretization, we formulate
our general splitting for the Potts problem. The problem reduces to smaller tractable
subproblems that we briefly describe. We conclude the section with a convergence
result.

2.1. Basic Splitting Algorithm for an Anisotropic Discretization

In the simplest case, the discretization of the regularizing term ‖∇u‖0 uses only finite
differences with respect to the coordinate axes. Thus, p1 = (1, 0), p2 = (0, 1), and the
weights ω1, ω2 are equal to 1. Then, the regularizing term reads

‖∇u‖0 = ‖∇p1u‖0 + ‖∇p2u‖0 = |{(i, j) : uij 6= ui+1,j}|+ |{(i, j) : uij 6= ui,j+1}|.

Plugging this discretization into (1), we rewrite the Potts problem as the constrained
optimization problem

minimize γ(‖∇p1u1‖0 + ‖∇p2u2‖0) + ‖Av − f‖22
subject to v − u1 = 0, v − u2 = 0, u1 − u2 = 0.

(3)

The augmented Lagrangian of this optimization problem reads

L = γ (‖∇p1u1‖0 + ‖∇p2u2‖0) + ‖Av − f‖22 + 〈λ1, v − u1〉+ µ
2 ‖v − u1‖22

+ 〈λ2, v − u2〉+ µ
2 ‖v − u2‖22 + 〈%, u1 − u2〉+ ν

2‖u1 − u2‖22. (4)

The constraints are now part of the (multivariate) target functional L. The parameter
ν > 0 controls how strong the split variables u1, u2 are tied to each other and µ > 0
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controls their coupling to v. The variables λ1, λ2, and % are (m× n)-dimensional
arrays of Lagrange multipliers. The inner product is defined as 〈x, y〉 =

∑
i,j xijyij .

Completing the squares in (4), we reformulate L in the convenient form

L = γ (‖∇p1u1‖0 + ‖∇p2u2‖0) + ‖Av − f‖22 + µ
2 ‖v − u1 + λ1

µ ‖
2
2 −

µ
2 ‖

λ1

µ ‖
2
2

+ µ
2 ‖v − u2 + λ2

µ ‖
2
2 −

µ
2 ‖

λ2

µ ‖
2
2 + ν

2‖u1 − u2 + %
ν ‖

2
2 − ν

2‖
%
ν ‖

2
2. (5)

We now use the alternating direction method of multipliers (ADMM). The basic
idea of ADMM is to minimize the augmented Lagrangian L with respect to u1, u2,
and v separately and to perform gradient ascent steps with respect to the Lagrange
multipliers. (We refer to [10] for a detailed treatment on optimization strategies based
on ADMM.) To simplify the expressions for arg minus

L, s = 1, 2, and arg minv L, we
will use the following lemma.

Lemma 2.1. For a, b1, ..., bN ∈ R and x1, ..., xN > 0, we have that∑
i xi(a− bi)2 = (

∑
i xi)(a−

∑
i bixi∑
i xi

)2 + C

where C ∈ R is a constant that does not depend on a.

Proof. We calculate∑
i xi(a− bi)2 = a2(

∑
i xi)− 2a(

∑
i bixi) +

∑
i b

2
ixi

= (
∑
i xi)

(
a2 − 2a

∑
i bixi∑
i xi

+
∑

i b
2
ixi∑

i xi

)
= (
∑
i xi)

(
a2 − 2a

∑
i bixi∑
i xi

+
(∑

i bixi∑
i xi

)2

−
(∑

i bixi∑
i xi

)2

−
∑

i b
2
ixi∑

i xi

)
= (
∑
i xi)

((
a−

∑
i bixi∑
i xi

)2

−
(∑

i bixi∑
i xi

)2

−
∑

i b
2
ixi∑

i xi

)
.

The last two terms do not depend on a, which shows the assertion.

Using Lemma 2.1, we can rearrange the quadratic summands of arg minus
L for

s = 1, 2 and those of arg minv L. Doing so, we get the iteration

uk+1
1 = arg minu1

2γ
µk+νk

‖∇p1u1‖0 + ‖u1 − 1
µk+νk

(µkv
k + νku

k
2 + λk1 − %k)‖22,

uk+1
2 = arg minu2

2γ
µk+νk

‖∇p2u2‖0 + ‖u2 − 1
µk+νk

(µkv
k + νku

k+1
1 + λk2 + %k)‖22,

vk+1 = arg minv ‖Av − f‖22 + µk+νk
2 ‖v − 1

2µk
(µku

k+1
1 + µku

k+1
2 − λk1 − λk2)‖22,

λk+1
1 = λk1 + µk(vk+1 − uk+1

1 ),

λk+1
2 = λk2 + µk(vk+1 − uk+1

2 ),

%k+1 = %k + νk(uk+1
1 − uk+1

2 ).
(6)

As coupling parameter, we use an increasing sequence (µk)k∈N. This is a slight
refinement of the standard ADMM [65].

The crucial observation is that we can solve all of the subproblems of (6) efficiently.
The first line decomposes into univariate Potts problems of the form

(uk+1
1 ):,j = arg min

g∈Rm

2γ

µk + νk
‖∇g‖0 + ‖g − 1

µk+νk
(µkv

k
:,j + νk(uk2):,j + (λk1):,j − %k:,j)‖22.

(7)
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(a) Original. (b) Reconstruction us-
ing N0 (PSNR: 20.0,
MSSIM: 0.851).

(c) Reconstruction us-
ing N1 (PSNR: 23.2,
MSSIM: 0.936).

(d) Reconstruction us-
ing N2 (PSNR: 24.6,
MSSIM: 0.956).

Figure 2 Reconstruction of geometric shapes from Radon data with 4 angles and noise level
0.01. The discretization N0 is anisotropic and tends to produce geometric staircasing. The
neighborhood N1 improves the result significantly. The knight-move system N2 gives the
most accurate reconstruction of the geometric shapes.

where we use the subscript notation x:,j to denote the j-th row of the (m× n)-image
x, that is, x:,j = (xij)i=1,...,m. Analogously, we get a decomposition for the second line
of (6) into the problems

(uk+1
2 )i,: = arg min

g∈Rn

2γ

µk + νk
‖∇g‖0 + ‖g − 1

µk+νk
(µkv

k
i,: + νk(uk+1

1 )i,: + (λk2)i,: + %ki,:)‖22.

(8)

The third line of (6) is a classical L2 Tikhonov regularization. The last three lines
are simple gradient-ascent steps in the Lagrange multipliers. We briefly describe in
Section 2.4 the strategies to solve these subproblems.

2.2. Design of Isotropic Discretizations

The anisotropic discretization of Section 2.1 measures the length of the jump set in
the anisotropic Manhattan metric [22]. This leads to geometric staircasing in the
reconstructions illustrated in Figure 2. The Euclidean length can be approximated
better when complementing the neighborhood system with finite-difference vectors,
for example, diagonal directions or “knight-move” directions [23]. We now present a
general scheme to construct appropriate neighborhood systems.

The starting point is the anisotropic neighborhood system

N0 = {(1, 0), (0, 1)}.

The vectors in this system have the (formal) slopes 0 and ∞. We add a new finite-
difference vector (x, y) ∈ Z2 to the system only if its slope y/x is not yet contained
in the system. For example, we can add the vector (1, 1) with slope 1. For reasons of
symmetry, we also add the orthogonal vector (1,−1). Thus, we get the neighborhood
system

N1 = {(1, 0), (0, 1), (1, 1), (1,−1)}. (9)

The next vectors to include in the neighborhood system are the four knight move
vectors (±2, 1), (1,±2) which leads to the system

N2 = {(1, 0), (0, 1), (1, 1), (1,−1), (−2,−1), (−2, 1), (2, 1), (2,−1)}. (10)
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The general scheme of adding new vectors corresponds to the standard enumeration
of the rational numbers.

Appropriate weights can be derived as follows. Let us assume that u is a binary
(n×n) image with an edge along the direction (x, y) ∈ N .We first look at lines with a
slope y/x between (−1) and 1 going from the left to the right boundary of the image.
(If the slope of (x, y) is not in the interval [−1, 1] then we look at the π/2-rotated
image and exchange the roles of x and y.) The Euclidean length of such a line is given
by n

√
x2 + y2/x. Since we want that the total jump length of this image equals that

Euclidean length, we get a condition on the weights that takes the form

S∑
s=1

ωs ‖∇psu‖0 = n

√
x2 + y2

x
. (11)

It remains to evaluate the left-hand side of (11) for the binary image u. This can be
done either manually for small neighborhood systems or with the help of a computer
program for larger neighborhood systems. When counting the non-zero entries of∇psu
we assume n to be large so that boundary effects are negligible. We end up with a
system of S equations for the S unknowns. For the diagonal neighborhood system
N1, (11) yields the conditions

ω1 + ω3 + ω4 = 1,

ω2 + ω3 + ω4 = 1,

ω1 + ω2 + 2ω3 =
√

2,

ω1 + ω2 + 2ω4 =
√

2.

Solving this linear system, we get the weights

ω1 = ω2 =
√

2− 1 and ω3 = ω4 = 1−
√

2

2
.

For the knight-move neighborhood systemN2, we get an analogous system of equations
in S = 8 unknowns which gives us the weights

ωs =


√

5− 2, for s = 1, 2,√
5− 3

2

√
2, for s = 3, 4,

1
2 (1 +

√
2−
√

5), for s = 5, ..., 8.

We now turn to the question of how well we approximate the Euclidean length
with the above discretizations. The neighborhood systems give rise to a norm ‖ · ‖N
defined for p ∈ R2 by

‖p‖N =

S∑
s=1

ωs|〈p, ps〉|.

By construction, the length ‖ps‖N coincides with the Euclidean length ‖ps‖2 for all
vectors ps in the neighborhood system as illustrated in Figure 3. In [23], it is proposed
to measure the isotropy of a finite-difference system by the ratio E between the longest
and the shortest unit vector with respect to that length, compiled as

E = max
‖p‖2=1

‖p‖N / min
‖p‖2=1

‖p‖N .
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0 1
0

1

(a) Anisotropic system N0, (E0 ≈ 1.41).

0 1
0

1

(b) System with diagonals N1 (E1 ≈ 1.08).

0 1
0

1

(c) System with knight moves N2 using the
weights of [23] (E′

2 ≈ 1.05).

0 1
0

1

(d) System with knight movesN2 using our
weights (E2 ≈ 1.03).

Figure 3 The solid line represents the length of a Euclidean unit vector as measured in the
finite-difference systems (as a function of the angle). The red dots identify the normalized
vectors of the neighborhood system ps/‖ps‖2 and the dashed line is the Euclidean unit circle.
The isotropy increases significantly when passing from N0 to N1. The increase in isotropy is
less substantial when passing from N1 to N2.

The closer the quantity E is to one the higher is the isotropy. For the anisotropic
system N0, we get the value E0 =

√
2 ≈ 1.41. The introduction of diagonal directions

reduces this value significantly to E1 ≈ 1.08. If we include also the knight-move
differences (N2), then the ratio improves further to E2 ≈ 1.03. We note that the
weights for the system N1 coincide with those proposed in [23], up to a normalization
factor. For N2, our weights are more isotropic than the weights of [23].

2.3. Splitting Scheme for General Discretizations

We now derive a minimization strategy for the general discretization (2). Let us denote
the neighborhood system by N = {p1, ..., pS} and let ω1, ..., ωS > 0 where S ≥ 2. We
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first rewrite (2) as the constrained optimization problem

minimize γ

S∑
s=1

ωs‖∇psus‖0 + ‖Av − f‖22

subject to ur − ut = 0, for all 1 ≤ r < t ≤ S,
v − us = 0, for all 1 ≤ s ≤ S.

(12)

The augmented Lagrangian of this optimization problem reads

L = γ

S∑
s=1

ωs‖∇psus‖0 +
µ

2
‖v − us +

λs
µ
‖22

+
ν

2

∑
1≤r<t≤S

‖ur − ut +
%r,t
ν
‖22 + ‖Av − f‖22. (13)

The parameter ν > 0 controls how strong the split variables u1, ..., uS are tied to
each other and µ > 0 controls their coupling to v. The variables λs, %r,t ∈ Rn×m
are Lagrange multipliers. In the ADMM iteration, we minimize L sequentially with
respect to v, u1, ..., uS . The minimization of L with respect to us reads

arg min
us

L = arg min
us

γωs‖∇psus‖0 +
µ

2
‖v − us + λs

µ ‖
2
2

+
ν

2

∑
1≤r<s

‖ur − us +
%r,s
ν ‖

2
2 +

ν

2

∑
s<t≤S

‖us − ut +
%s,t
ν ‖

2
2. (14)

We rearrange this expression using Lemma 2.1 to

arg min
us

L = arg min
us

2γωs
µ+ ν(S − 1)

‖∇psus‖0 + ‖us − ws‖22

with

ws =
µv + λs +

∑
1≤r<s(νur + %r,s) +

∑
s<t≤S(νut − %s,t)

µ+ ν(S − 1)
.

In a similar way, we consider the minimizer with respect to v as

arg min
v

L = arg min
v

‖Av − f‖22 +

S∑
s=1

µ

2
‖v − us +

λs
µ
‖22

which we rewrite using Lemma 2.1 as

arg min
v

L = arg min
v

‖Av − f‖22 +
µS

2
‖v − 1

S

S∑
s=1

(us −
λs
µ

)‖22.

Having computed explicit expressions for the minimization with respect to each
variable, we obtain the ADMM iteration

uk+1
1 = arg minu1

2γω1

µk+νk(S−1)‖∇p1u1‖0 + ‖u1 − wk1‖22,
...

uk+1
S = arg minuS

2γωS

µk+νk(S−1)‖∇pSuS‖0 + ‖uS − wkS‖22,
vk+1 = arg minv ‖Av − f‖22 + µkS

2 ‖v − z
k‖22,

λk+1
s = λks + µk(vk+1 − uk+1

s ), for all 1 ≤ s ≤ S,
%k+1
r,t = %kr,t + νk(uk+1

r − uk+1
t ), for all 1 ≤ r < t ≤ S.

(15)
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Here, wks is given by

wks =
µkv

k + λks +
∑

1≤r<s(νku
k+1
r − %kr,s) +

∑
s<t≤S(νku

k
t + %ks,t)

µk + νk(S − 1)

and zk by

zk =
1

S

S∑
s=1

(
uk+1
s − λks

µk

)
.

The key observation every of the subproblem in the ADMM iteration can be solved
efficiently. The minimization problems in u1, ..., uS decompose into univariate Potts
problems with respect to the directions induced by the finite difference vectors ps.
To fix ideas, consider the finite-difference vector ps = (1, 1). Then, the solution uk+1

s

is given by solving one univariate Potts problem for each diagonal line of the two-
dimensional array wks . The last subproblem, like in the anisotropic case, is a classical
Tikhonov-type regularization.

We eventually remark that the anisotropic splitting (6) is a special case of the
general form (15) if we choose the anisotropic finite-difference system N0.

2.4. Solution of the Subproblems

Solution methods for the univariate Potts and classical Tikhonov problems are well
studied. Since they are the important building blocks of our iteration (15), we briefly
recall the idea of the algorithms.

The classical univariate Potts problem is given by

Pγ(g) = γ ‖∇g‖0 + ‖g − f‖22 → min, (16)

where g, f ∈ Rn and ‖∇g‖0 = |{i : gi 6= gi+1}| denotes the number of jumps of g. This
can be solved exactly by dynamic programming [22, 37, 59, 60, 73, 79, 82]. The basic
idea is that a minimizer of the Potts functional for data (f1, ..., fr) can be computed
in polynomial time provided that minimizers of the partial data (f1), (f1, f2), ...,
(f1, ..., fr−1) are known. We denote the respective minimizers by g1, g2, ..., gr−1. In
order to compute a minimizer for data (f1, ..., fr), we first create a set of r minimizer
candidates h1, ..., hr, each of length r. These minimizer candidates are given by

h` = (g`−1, µ[`,r], ..., µ[`,r]︸ ︷︷ ︸
Length (r−`+1)

), (17)

where g0 is the empty vector and µ[`,r] denotes the mean value of data f[`,r] =

(f`, ..., fr). Among the candidates h`, one with the least Potts functional value is
a minimizer for the data f[1,r].

In [37], Friedrich et al. proposed the following O(n2) time and O(n) space
algorithm. They observed that the functional values of a minimizer Pγ(gr) for data
f[1,r] can be computed directly from the functional values Pγ(g1), ..., Pγ(gr−1) and the
squared mean deviations of the data f[1,r], ..., f[r,r]. Indeed, using (17), the functional
value of the minimizer gr is given (setting Pγ(g0) = −γ) by

Pγ(gr) = min
`=1,...,r

Pγ(g`−1) + γ + d[`,r], (18)
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where d[`,r] denotes the squared deviation from the mean value

d[`,r] = min
y∈R
‖y − f[`,r]‖22 = ‖(µ[`,r], ..., µ[`,r])− f[`,r]‖22.

The evaluation of (18) is O(n) if we precompute the first and second moments of
data f[`,r]. If `∗ denotes the minimizing argument in (18), then (`∗ − 1) indicates
the rightmost jump location at step r, which is stored as J(r). The jump locations
of a solution gr are thus J(r), J(J(r)), J(J(J(r))), ...; the values of gr between two
consecutive jumps are given by the mean of f on this interval. Note that we only have
to compute and store the jump locations J(r) and the minimal Potts functional value
Pγ(gr) in each iteration. The reconstruction of the minimizer from the jump locations
only has to be done once for gn at the end; it is thus not time-critical.

The algorithm for solving (16) consists of two nested loops for r = 1, ..., n and
` = 1, ..., r, which amounts to n(n + 1)/2 iterations in total. Typically, a significant
amount of configurations are unreachable and thus can be skipped [73, Theorem 2].
The time complexity is still O(n2), but the practical runtime is improved by a fourfold
to fivefold factor. Refer to [73] for the complete flow diagram of the accelerated
algorithm.

Our second subproblem is the solution of a classical L2 Tikhonov regularization

vk+1 = arg min
v

‖Av − f‖22 +
µ

2
‖v − z‖22 (19)

with some z ∈ Rm×n. The unique minimizer of this problem is given by the solution
of the normal equation

(A∗A+
µ

2
I) v = A∗f +

µ

2
z. (20)

Here, A∗ is the adjoint of A. This linear system can be solved using, for example,
the conjugate-gradient method. In some cases we can exploit the structure of A for
more efficient solution methods. This is the case when A is the Radon transform or a
convolution operator (see Section 3).

2.5. General Data Terms

Inspecting the ADMM iteration, we observe that the data term only appears in the
first line. That line consists of a classical Tikhonov regularization with the L2 data
term ‖Av − f‖22. Minimizers of that problem can be solved efficiently for many other
data terms d(u, f), such as Lp data terms, p ≥ 1, of the form

d(v, f) = ‖Av − f‖pp

or a Huber data term which is a hybrid between L1 and L2 data terms [25, 78]. In
general, our algorithm is applicable whenever the proximal point operator proxd(·,f)/µ

of d(·, f), defined by

proxd(·,f)/µ(z) = arg min
v

d(v, f) +
µ

2
‖v − z‖22,

can be evaluated efficiently. This is often the case when d(·, f) is a convex functional.
We refer to [11] for an extensive overview on strategies for convex optimization.
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2.6. Convergence

In this section, we show that Algorithm (15) converges in the prototypical case νk = 0
for all k. We leave a convergence proof for Algorithm (15) with general νk as an open
problem. For the proof, we use methods developed in [74].

Theorem 2.2. Let the sequence (µk)k∈N be increasing and satisfy
∑
k µ
−1/2
k < ∞.

Further, let νk = 0 for all k. Then, the iteration (15) converges in the sense that

(uk1 , . . . , u
k
S , v

k)→ (u∗1, . . . , u
∗
S , v
∗) with u∗1 = . . . = u∗S = v∗,

λk
s

µk
→ 0 for all s ∈ {1, . . . , S}. (21)

Proof. We denote the S functionals appearing in the first S lines of (15) by F ks , i.e.,

F ks (us) =
2γωs
µk
‖∇psus‖0 + ‖us − (vk +

λks
µk

)‖22.

Using this notation, we rewrite the first S lines of (15) as uk+1
s ∈ arg minu F

k
s (us) for

all s ∈ {1, . . . , S}. We first estimate the distance ‖uk+1
s − (vk − λk

s

µk
)‖2. To that end,

we note that F ks (uk+1
s ) ≤ F ks

(
vk − λk

s

µk

)
which holds true since uk+1

s minimizes F ks .

Applying the definition of F ks , we get

γ‖∇psuk+1
s ‖0+

µk
2
‖uk+1

s −
(
vk − λks

µk

)
‖22 ≤ γ‖∇ps

(
vk − λks

µk

)
‖0 ≤ γL,

where L = max(N,M) is the maximal side length of the considered (N ×M) image.
Since the first summand on the left-hand side is nonnegative, we get that

‖uk+1
s −

(
vk − λks

µk

)
‖22 ≤

γL

µk
. (22)

In particular, for all s ∈ {1, . . . , S}, we obtain that

lim
k→∞

uk+1
s −

(
vk − λks

µk

)
= 0. (23)

We now draw our attention to the (S + 1)th line of (15). We denote the
corresponding functional by Gk, i.e.,

Gk(v) = ‖Av − f‖22 +
µkS

2
‖v − 1

S

S∑
s=1

(uk+1
s − λks

µk
)‖22.

The minimality of vk+1 implies the inequality

Gk(vk+1) ≤ Gk
(

1

S

S∑
s=1

(uk+1
s − λks

µk
)

)
.
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We now apply the definition of Gk to estimate

‖Avk+1 − f‖22 +
µkS

2
‖vk+1 −

(
1

S

S∑
s=1

(uk+1
s − λks

µk
)

)
‖22

≤‖A

(
1

S

S∑
s=1

(uk+1
s − λks

µk
)

)
− f‖22

≤‖A

(
1

S

S∑
s=1

(uk+1
s − λks

µk
− vk)

)
+Avk − f‖22

≤

(
‖A‖‖ 1

S

S∑
s=1

(uk+1
s − λks

µk
− vk)‖2 + ‖Avk − f‖2

)2

. (24)

Here, ‖A‖ is the operator norm of A acting on `2. We now combine (24) and (22) to
estimate the magnitude of the residuals Avk+1 − f. We get

‖Avk+1 − f‖ ≤ C
√
µk

+ ‖Avk − f‖,

where C > 0 is a constant that only depends on γ, L, and ‖A‖. Solving this recursion
yields

‖Avk+1 − f‖ ≤ C
k∑
j=1

1
√
µj

+ ‖Av0 − f‖p,

which shows that the sequence of residuals (Avk+1−f)k∈N is bounded. Together with
(24), this implies

µkS
2 ‖v

k+1 − 1

S

S∑
s=1

(uk+1
s − λks

µk
− vk)‖2 ≤ (‖A‖‖ 1

S

S∑
s=1

(uk+1
s − λks

µk
− vk)‖+ C ′)2

≤ (‖A‖ 1

S

S∑
s=1

‖(uk+1
s − λks

µk
− vk)‖+ C ′)2.

Here, C ′ is a positive constant independent of k. We now use (23) to conclude that
the sequence (with respect to k)

µk‖vk+1 − 1

S

S∑
s=1

(uk+1
s − λks

µk
− vk)‖22 is bounded. (25)

We use this fact to establish the convergence of the sequence vk by showing that
it is a Cauchy sequence. We estimate

‖vk+1 − vk‖ ≤ ‖vk+1 − 1

S

S∑
s=1

(uk+1
s − λks

µk
− vk)‖+ ‖ 1

S

S∑
s=1

(uk+1
s − λks

µk
− vk)− vk‖.

We now apply (22) as well as (25) to the summands on the right-hand side to obtain

‖vk+1 − vk‖ ≤ C ′′
√
µk
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for some constant C ′′ > 0 which is again independent of k. The assumption on the
sequence µk guarantees that vk is a Cauchy sequence and hence that vk converges to
some v∗.

To establish the last statement in (21), we rewrite each of the last S lines in (15)
to obtain the identity

λk+1
s

µk
= (

λks
µk

+ uk+1
s − vk) + (vk − vk+1). (26)

By (23) and (25), each term in parenthesis converges to 0. Hence,

lim
k→∞

λk+1
s

µk
= 0.

Since we assume that the sequence µk is nondecreasing, we have that µk/µk+1 ≤ 1
and thus, for all s = 1, . . . , S,

lim
k→∞

λks
µk

= 0.

This shows the last statement in (21). Finally, we rewrite the third line of (15) as
uk+1
s − vk+1 = (λk+1

s − λks)/µk to obtain the inequality

‖uk+1
s − vk+1‖ ≤ ‖λ

k+1
s ‖
µk

+
‖λk

s‖
µk
→ 0.

This means that uks − vk → 0 for all s = 1, . . . , S and, since vk converges, also each uks
converges and the corresponding limit u∗s equals v∗, which completes the proof.

3. Applications

We now demonstrate the applicability of our method to several imaging problems.
We first consider tomographic problems that are modeled by the classical Radon
transform and by closely related operators; in particular, x-ray computed tomography
and positron emission tomography [61]. Further, we look at thermoacoustic and
photoacoustic tomography which are frequently modeled by the spherical Radon
transform [76]. Furthermore, we apply our method to deconvolution problems. If
the imaged object is (approximately) piecewise constant then the result can be seen
as reconstruction of the imaged object. Otherwise, the results have to be understood
as a joint reconstruction and segmentation.

Unless stated otherwise, the setup for the numerical experiments is as follows: We
use the ADMM iteration (15) with the coupling sequence µk = 10−6 ·kτ with τ = 2.01
and we choose νk identically zero. This choice satisfies the hypothesis of Theorem
2.2. For the experiments involving the Shepp-Logan phantom, we observed the best
results using the neighborhood system N1 of (9) while the neighborhood N2 of (10)
gave better result for the more realistic images (Figures 6, 8, and 9); see also the
comparison in Figure 2. For the solution of the Tikhonov type problem (19), we use
Matlab’s conjugate-gradient method on the normal equation (20). We use a “warm
start”, which means that we use the solution of the previous iteration vk as initial
guess for vk+1. Then the conjugate-gradient iteration converges typically in few steps.
The split variables v, us for s ≥ 1, and the Lagrange multipliers are all initialized with
0. We stop the iteration when the relative L2 error of u1 and u2 falls below 10−3.
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Noise level 0.05 Noise level 0.1 Noise level 0.15

PSNR: 18.7 PSNR: 13.1 PSNR: 9.7
MSSIM: 0.16 MSSIM: 0.09 MSSIM: 0.06

PSNR: 33.2 PSNR: 27.7 PSNR: 23.4
MSSIM: 0.98 MSSIM: 0.96 MSSIM: 0.95

Figure 4 Our method (bottom row) is able to recover the large geometric structures from
Radon data (360 projections), even in the presence of extremely high noise. For comparison,
the results of the filtered backprojection are shown in the top row. (See Figure 1a for the
original image.)

In our simulated experiments, the noise is Gaussian with standard deviation
σ = noiselevel · ‖f‖∞. The model parameter γ was adjusted empirically. The quality
of a reconstruction u is measured in terms of the peak signal-to-noise-ratio given by
PSNR(u) = 10 log10

(
mn‖g‖2∞
‖g−u‖22

)
where g ∈ Rm×n is the ground truth. We further

use the mean structural similarity index (MSSIM) [77] which is better suited to
perceived visual quality than the PSNR as it takes the similarity of local structures
into account. The MSSIM is bounded from above by 1 and a higher MSSIM means
a better reconstruction quality. Here, we use Matlab’s function ssim with standard
parameters for the computation of the MSSIM.

3.1. Radon Data

The Radon transform is defined by

Ru(θ, s) =

∫ ∞
−∞

u(sθ + tθ⊥) dt, (27)

where s ∈ R, θ ∈ S1, and θ⊥ is the unit vector π/2 radians counterclockwise from
θ. It serves as the mathematical model of x-ray tomography and positron emission
tomography. The Radon transform is a bounded linear operator from L2(Ω) to
L2(S1 × R), where Ω denotes the closed unit ball in R2. Reconstruction from Radon
data is special in our approach because we can solve the Tikhonov problem (19)
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10 projections 15 projections 20 projections
Noise level 0.01 Noise level 0.02 Noise level 0.03

PSNR: 9.2 PSNR: 9.9 PSNR: 9.2
MSSIM: 0.075 MSSIM: 0.071 MSSIM: 0.066

PSNR: 24.9 PSNR: 26.4 PSNR: 25.7
MSSIM: 0.931 MSSIM: 0.949 MSSIM: 0.947

Figure 5 Reconstruction of the Shepp-Logan phantom from highly undersampled Radon
data with noise. The fine details vanish but the large geometric structures are still are
recovered by our method (bottom row). Filtered backprojection results are shown for
comparison (top row).

very efficiently using a filtered-backprojection-type algorithm. We first recall that the
backprojection operator R∗ is defined via

R∗f(x) =

∫
S1

f(θ, x · θ) dθ.

Now we can formulate a regularized variant of the classical filtered backprojection.
Since we have not found the statement in this form in the literature, we provide a
short proof.
Lemma 3.1. Let f = Rw for some w ∈ L2(Ω) and α > 0. Then,

arg min
v∈L2(Ω)

‖Rv − f‖22 + α ‖v − z‖22 = R∗Hα(f −Rz), (28)

where the filtering operator is defined via

Hαf = F−1
s (hαFsf)

with the filter function

hα(r) =
|r|

4π + α |r|
.

Above, Fs (and F−1
s ) denotes the one dimensional Fourier transform (and its inverse)

of a function f(θ, s) with respect to the parameter s.
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Proof. Setting u = v − z and g = f −Rz we first rewrite the cost functional as

‖Rv − f‖22 + α ‖v − z‖22 = ‖Ru− g‖22 + α ‖u‖22 . (29)

In what follows, we denote by uα the minimizer of the right-hand side in (29). We first
note that uα satisfies the normal equationR∗Ruα+αuα = R∗g (see (20)). Further, we
get from [61, Theorem II.1.5] that R∗Ruα = 2(‖ · ‖−1

2 ∗ uα). Therefore, by taking the
Fourier transform on both sides of the normal equation and applying the convolution
theorem together with [42, Ch.V, Lemma 5.2], we obtain the following relation for the
Fourier transform of uα :

ûα(ξ) =
‖ξ‖2

4π + α ‖ξ‖2
R̂∗g(ξ). (30)

Formula (30) is a special case of a formula derived in [45, Sec. 7]. Now, since g = Rw′

with w′ = w − z, a similar argument shows that R̂∗Rw′(ξ) = 4π ‖ξ‖−1
2 ŵ′(ξ) and,

therefore, that

ûα(ξ) =
4π

4π + α ‖ξ‖2
ŵ′(ξ). (31)

Next, we make use of the Fourier-slice theorem [61, Theorem II.1.1]. It states
that R̂θw′(r) =

√
2π ŵ′(rθ) , where Rθw′ = Rw′(θ, · ). Using (31) we obtain

uα(x) =
1

2π

∫
R2

ûα(ξ)eix·ξ dξ

=
1

2π

∫
R2

4π

4π + α ‖ξ‖ 2

ŵ′(ξ)eix·ξ dξ

=

∫
S1

2

∫ ∞
0

1

4π + α |r|
ŵ′(rθ)eirx·θr dr dθ

=

∫
S1

∫ ∞
−∞

|r|
4π + α |r|

ŵ′(rθ)eirx·θ dr dθ

=

∫
S1

1√
2π

∫ ∞
−∞

|r|
4π + α |r|

R̂θw′(r)eirx·θ dr dθ

=

∫
S1

HαRw′(θ, x · θ) dθ

= R∗HαRw′(x).

Since Rw′ = Rw −Rz = f −Rz, the assertion follows.

We show in Figure 4 the result of our method for the reconstruction of the Shepp-
Logan phantom from Radon data with dense angular sampling (360 angles). For very
high noise levels the small details vanish but the larger geometric structures are still
reconstructed.

Using (28) is efficient but it is strongly affected by angular undersampling.
Whenever the undersampling is too pronounced, using (28) leads to large
reconstruction errors. In such cases, we resort to the standard conjugate-gradient
method on the normal equation (20). With this strategy, we obtain a high-quality
reconstruction of the Shepp-Logan phantom from only 7 projections of noise-free data
as illustrated in Figure 1 (PSNR above 40 dB, MMSIM above 0.99). In Figure 5, we
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(a) FBP using 192
projections.

(b) Proposed method
using 192 projections.

(c) FBP using 24 pro-
jections.

(d) Proposed method
using 24 projections.

Figure 6 Joint reconstruction and segmentation from undersampled PET data of a physical
thorax phantom [32]. The proposed method segments the anatomic structures (lung, spine,
and thorax body). Filtered backprojection results are shown for comparison.

perform similar experiments, this time with noise added and a few more measurements.
We observe that, while the small structures are lost in the reconstruction, the geometric
structures at large scale are well recovered.

Next, we apply our method to PET data. The PET model is closely related to the
CT model. The PET data is given as a product of the Radon transform with a function
depending on the attenuation. Under the assumption that this function is known, the
remaining problem is the computation of u from its line integrals, which is exactly
the tomography problem. In Figure 6, we see the results for a PET data of a physical
thorax phantom [32]. Our method is able to jointly reconstruct and to segment the
anatomic structures (lung, spine, and thorax body) from highly undersampled data.

3.2. Spherical Radon Data

The spherical mean Radon transformM is given by

Mu(θ, t) =

∫
S1

u(θ + tζ) dζ. (32)

The value Mu(θ, t) is the average of u over the sphere centered at θ ∈ R2 with
radius t > 0. Data of this form appear naturally in various models of photoacoustic
tomography. PAT is a hybrid imaging modality that uses laser pulses for the generation
of pressure waves (acoustic signal) inside of the imaged object. These acoustic waves
propagate through the tissue and beyond. They are finally recorded by ultrasonic
detectors (transducers) which are distributed around the object [75, 76].

The corresponding image reconstruction problem consists of recovering a function
u : R2 → R from the knowledge of certain spherical integrals Mu(θ, t). Here, the
centers of the circles are placed on an acquisition curve Ξ ⊂ R2 that surrounds the
object. The radii of the circles vary in [0,∞). The problem of the inversion of M
has been intensively investigated in recent years and still attracts much attention
[2, 18, 33, 54, 76]. In many practical PAT setups, the acquisition curve is a circle so
that we assume Ξ = S1 from now on. We consider a compact set Ω ⊂ R2 that is
contained inside the interior of the ball bounded by S1. Then, the spherical mean
Radon transform is a bounded linear operator from L2(Ω) to L2(S1× [0, 2]), dθ r dr).
For the solution of the Tikhonov problem (19), we need the adjoint ofM. This adjoint
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10 projections 15 projections 20 projections
Noise level 0.01 Noise level 0.02 Noise level 0.03

PSNR: 13.1 PSNR: 14.3 PSNR: 15.0
MSSIM: 0.171 MSSIM: 0.163 MSSIM: 0.147

PSNR: 28.3 PSNR: 27.1 PSNR: 24.6
MSSIM: 0.954 MSSIM: 0.955 MSSIM: 0.941

Figure 7 Reconstruction of the Shepp-Logan phantom from few projections of the spherical
Radon transform (Original: Figure 1a). The filtered backprojection-type reconstructions
suffer heavily from artifacts (top row). Although some fine structures get lost, our
reconstruction recovers the large-scale structures (bottom row).

is given by the backprojection operatorM∗ which is defined by

M∗f(x) =

∫
S1

f(θ, |x− θ|) dθ. (33)

The integral (33) is well-defined for sufficiently regular functions. Using density
arguments, the operator is continuously extended to L2.

We solve the Tikhonov problem using the standard conjugate gradients on the
normal equation. To this end, we implemented the projection operator (32) and
the backprojection operator (33) using numerical quadrature. The exact projection
centers are {k · ∆θM : k = 1, . . . ,M}, where ∆θM = 360◦/M and M denotes the
number of centers.

We compare our approach with filtered-backprojection-type reconstruction
algorithms as proposed in [2, 34, 41]. In this work, we use R. Seyfried’s implementation
of the algorithm in [2, 34]. We briefly recall the basic idea: The reconstruction is
computed approximatively by using summability kernels Kε : Ω× Ω → R, ε ∈ (0, 1),
of the form

Kε(x, y) =

∫
S1

hε(x, ζ, |y − ζ|) dζ.

Then, an approximation to u can be computed from spherical mean values of u via

uε(x) =

∫
Ω

Kε(x, y)u(y) dy =

∫ 2

0

∫
S1

hε(x, θ, t)Mu(θ, t) dθ t dt.
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(a) Original (481× 321). (b) Blurred and noisy data. (c) Our result (γ = 0.5).

Figure 8 Joint reconstruction and segmentation of an image blurred by a Gaussian kernel
(σ = 10) and corrupted by extreme Gaussian noise of level 0.5.

Under certain smoothness assumptions on hε, one obtains pointwise or even uniform
convergence uε(x)→ u(x).

We observe that the FBP-type reconstruction suffers from severe artifacts when
only few data are available. In contrast, our method gives a high-quality reconstruction
from only 7 projections in the noise-free case (Figure 1). For noisy data, we still can
recover the macro structures using our method as shown in Figure 7.

3.3. Further Applications

We finally demonstrate the applicability of our method to deblurring problems. Here,
the operator A is a convolution operator. Hence, the normal equation (20) can be
solved efficiently by fast Fourier transform. The experiments illustrate in particular
that the method can also be applied to vector-valued data such as color images. We
follow the splitting strategy proposed in the present paper and extend the univariate
Potts problem to vector-valued data as found in [73]. It is worth mentioning that
the computational effort grows only linearly in the dimension of the vectorial data.
For example, the cost for processing a color image is about three times the cost of
processing a gray-value image. We show in Figure 8 the joint reconstruction and
segmentation of an image blurred by a Gaussian kernel. (The image was taken from
the Berkeley Segmentation Dataset [58]). In Figure 9, we see the restoration of a
traffic sign from simulated motion blur. Motion blur is modeled as a one-dimensional
convolution along the direction v ∈ R2. Here, we use a moving average with respect
to the horizontal direction. This experiment also illustrates that a positive coupling-
parameter sequence νk can improve the result.

4. Conclusion

In this paper, we have developed a new splitting approach for the Potts model (or
piecewise-constant Mumford-Shah model) for ill-posed inverse problems in imaging.
We have presented a general discretization scheme which permits near-isotropic
approximations of the length terms. This discretization allowed us to split the Potts
problem into specific subproblems that can be solved with efficient algorithms. We
have demonstrated the capability of our method in various imaging applications. In
particular, our algorithm has reconstructed the Shepp-Logan phantom from only
seven projections of Radon and spherical Radon data, respectively. Further, we
have obtained high-quality reconstructions of piecewise-constant images from highly
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(a) Original
(559× 480).

(b) Blurred and noisy
data.

(c) Result using νk =
0. (MSSIM: 0.780)

(d) Result using νk =
µk/S. (MSSIM: 0.793)

Figure 9 Restoration and segmentation of an image from a simulated horizontal motion blur
of 65 pixel length with Gaussian noise of level 0.1. The letters are recovered almost perfectly
(c). The result improves if we use the algorithm of (15) with νk = µk/S instead of νk = 0
(d).

incomplete and noisy data. Finally, we have demonstrated that is applicable for joint
reconstruction and segmentation of real tomographic data.
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