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Convergence and smoothness analysis
of subdivision rules in Riemannian and
symmetric spaces

Abstract After a discussion on definability of invariant subdivision rules
we discuss rules for sequential data living in Riemannian manifolds and in
symmetric spaces, having in mind the space of positive definite matrices
as a major example. We show that subdivision rules defined with intrinsic
means in Cartan-Hadamard manifolds converge for all input data, which
is a much stronger result than those usually available for manifold subdi-
vision rules. We also show weaker convergence results which are true in
general but apply only to dense enough input data. Finally we discuss C1

and C2 smoothness of limit curves.

1 Introduction

Several subdivision rules for manifold-valued data have been proposed
and successfully analyzed in recent years. Intrinsic constructions work by
replacing certain elementary constructions which apply to vector space
data by analogous ones which operate on manifold data. Examples of
operations thus modified are binary affine averages [11,15], or point-vector
addition [13,4]. Other, extrinsic methods perform linear subdivision and
add a projection afterwards [15,16]. The present paper is concerned with
intrinsic subdivision rules and their properties. In particular, we discuss
the following:

– Geometries which can possibly support meaningful subdivision (in the
sense of invariance with respect to a defining transformation group);
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– Subdivision defined by the Riemannian center of mass (intrinsic mean)
in Riemannian and symmetric spaces, and also log/exp subdivision in
such spaces;

– Situations where convergence occurs for all input data (namely in
Cartan-Hadamard manifolds for positive mask).

– Convergence analysis which applies to ‘dense enough’ input data, and
further, C1 and C2 smoothness analysis of limit curves, provided they
exist. These results are of the kind which have been obtained before.

– Discussion of subdivision in the set of positive definite symmetric ma-
trices, this data type being relevant for example for the processing of
diffusion tensor images.

We restrict ourselves to univariate subdivision rules defined by

p = (pi)i∈Z =⇒ Sp = (Spi)i∈Z where Spi =
∑

j∈Z
ai−N jp j. (1)

Here N ∈ {2, 3, . . . } is the dilation factor of the rule, and the mask (a j) j∈Z has
only finitely many nonzero coefficients. We require the affine invariance of
the subdivision rule, which means

∑
j ai−N j = 1 for all i. This implies that S

has a derived rule S∗ with S∗∆ = N∆S, where ∆pi = pi+1 − pi.

Meaningful geometric constructions

Like any other construction, subdivision in a certain geometry should be
meaningful, which means being invariant with respect to the transforma-
tions which are constitutive to that geometry. For example, a subdivision
rule T for points pi on the unit sphere should be invariant with respect to
any rotation g in the sense that T(g◦p) = g◦Tp. Likewise, a subdivision rule
for straight lines in space should be invariant with respect to the Euclidean
motion group SE3.

Even simple concepts like the midpoint of two geometric entities are
sometimes not invariantly definable. An example of this behaviour is fur-
nished by the projective space RPn, where any triple x, y,m of collinear
points can be mapped into any other triple x′, y′,m′ of collinear points by
a projective transformation. The same is true for triples of non-collinear
points. It follows that there exists no concept of midpoint in projective space
in the sense of a function m(x, y) such that for all projective transformations
g, we have g(m(x, y)) = m(g(x), g(y)). The following paragraph shows that
computing midpoints is actually a special case of subdivision, and so we
conclude that such projective spaces do not admit invariant subdivision
rules.

For computing midpoints via subdivision, consider special input data pi

with pi = x for i < 0 and pi = y for i ≥ 0. Letting a = 1
8 (. . . , 0, 1, 4, 6, 4, 1, 0, . . . )

in Equ. (1) results in the well known cubic Lane-Riesenfeld subdivision rule

Sp2i =
1
2

(3
4

pi +
1
4

pi−1

)
+

1
2

(3
4

pi +
1
4

pi+1

)
, Sp2i+1 =

1
2

pi +
1
2

pi+1. (2)
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Apparently Sp1 =
x+y

2 , so no invariant analogue of the cubic Lane-Riesen-
feld rule exists in projective spaces. An analogous argument applies to
other weighted averages and appropriate subdivision rules.

2 Geometric constructions in symmetric paces

2.1 Homogeneous spaces

The geometries which fit Felix Klein’s Erlangen program are characterized
by the action of a transformation group on them. They can be formally de-
scribed by the concept of homogeneous space. We first discuss this in general
and then specialize to the case of symmetric spaces. The latter turn out to
possess just the right number of degrees of freedom in their transformation
groups to make subdivision rules definable. For the reader’s convenience
we illustrate the abstract definitions which follow below by the example
Posn.

Assume that the group G acts on on the set X as a transformation group:
for any g ∈ G, the mapping x 7→ g ◦ x maps X into X such that e ◦ x = x and
(gh)◦ x = g◦ (h◦ x)). We further require that for given x and y there is some
g with g ◦ x = y. We choose a base point b and identify a point x ∈ X with
the set of transformations which map the base to x: This means that with
π(g) = g ◦ b, x is identified with π−1x. Obviously π−1x is a set of type g · K,
where g is any element of π−1x and K consists of those g ∈ G with g ◦ b = b.
We can therefore use the notation G/K = {gK | g ∈ G} instead of X. If now
a point of X is written as “gK”, then g ◦ hK = (gh)K.

Example 1 Posn is defined as the set of positive definite symmetric n × n
matrices. The group GLn acts on X via g ◦ x = gxgT. We choose the unit
matrix as a base point, and so K = On and π(g) = ggT. Identifying a matrix
x ∈ Posn with the set of g ∈ GLn such that ggT = x, we have Posn = GLn/On.

We consider only the case that G is a Lie group, K is a Lie subgroup, and
X is a smooth manifold. The Lie algebras of G, K are denoted by g, k,
respectively. As π−1e = K, the kernel of the differential dπe equals k.

Example 2 Continuing Example 1, we get g = gln (the Lie algebra of n × n
matrices) and k = son, which is the Lie algebra of skew-symmetric matrices.

2.2 Symmetric Spaces

The theory of symmetric spaces is very extensive (see for instance the classic
[5]). For our purposes global properties of the space are not important, so
we consider what Section IX.2 of [8] calls the infinitesimal version of a
symmetric space. We call a homogeneous space symmetric, if and only if
k occurs as the +1 eigenspace of a reflection s : g → g which is also a Lie
algebra automorphism — this means that s2 = id and s([v,w]) = [s(v), s(w)]
for all v,w. The −1 eigenspace of s is denoted by s.
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Remark 1 This definition is more general than the more common definition
which requires that K is (an open subgroup of) the fixed point set of a Lie
group automorphism σ : G→ G with the property σ2 = id, the reflection s
being the differential of σ. If G is simply connected, these notions coincide,
as for any s we can find an appropriate σ whose differential is s.

Example 3 We see that s(v) = −vT makes Posn a symmetric space, because
s(vw − wv) = s(v)s(w) − s(w)s(v), and the +1 eigenspace of s equals k = son.
The −1 eigenspace is s = Symn (i.e., the space of symmetric n×n matrices).
Apparently, the mapping σ(g) := (g−1)T is an automorphism of the group
GLn which has On as its fixed point set. It further obeys σ2 = id and dσ = s.
Thus, Posn is a symmetric space not only in the infinitesimal sense, but also
in the narrower sense.

A transformation x 7→ g ◦ x does not only map points, but also tangent
vectors, via its differential: If x(t) is a curve with d

dt x(0) = v, we denote
the derivative d

dt (g ◦ x(t))|t=0 by the symbol g � v. We would also like to
represent tangent vectors of X in terms of the groups G,K: As s and k
are complementary subspaces, the restriction of the differential dπe to the
subspace s is 1-1 and onto. We can therefore uniquely represent a tangent
vector v attached to the base point by a vector ṽ ∈ s.

Example 4 In the setting of Example 1, the assumption y(t) = g ◦ x(t) =
gx(t)gT with d

dt x = v implies that dy
dt = g dx

dt gT, i.e., g � v = gvgT. As to
representing tangent vectors of Posn, we first consider the differential of
the projection: The computation d

dt

∣∣∣
t=0
π(e+ tṽ) = ṽ+ ṽT implies that dπe(ṽ) =

ṽ+ṽT. The tangent vector space of Posn at e (and indeed in any point) equals
Symn. Obviously v ∈ Symn is represented by ṽ = v/2 ∈ Symn, because then
dπe(ṽ) = v.

We consider symmetric spaces for two reasons: One is that geometric con-
structions relevant to subdivision processes can be consistently defined in
them. Another reason is that several prominent geometries fall into this
category – we have already encountered Posn. Others are the sets of unit
vectors ofRn+1 (leading to Sn = On+1/On), or the set of d-dimensional linear
subspaces of Rn (which is called the Grassmannian Gd,n).

2.3 The exponential mapping.

For the purpose of transferring the definition of subdivision rules from
Euclidean space to a more general setting, operations v = y	x and y = x⊕v
which are analogous to the difference vector of points and the sum of point
and vector are very useful [13]. We describe how to invariantly define such
operations in Riemannian manifolds and in symmetric spaces by means of
the exponential mapping .

This concept has already been employed for the purpose of subdivision
in Lie groups, where it makes sense to let y 	 x = log(x−1y) and x ⊕ v =
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x exp(v), where exp is the exponential mapping in the group [13,2,4,18].
In Riemannian geometry a similar construction is x ⊕ v := expx(v) and
y 	 x = exp−1

x (y). Here expx(v) is the exponential mapping which follows
the geodesic line emanating from x in direction v for the amount of arc
length given by ‖v‖.

The case of symmetric spaces is similar to the Riemannian case. Most
symmetric spaces which occur in the literature also have a Riemannian
exponential mapping, coinciding with the one defined below. There are,
however, symmetric spaces which do not admit an invariant Riemannian
metric, not even a pseudo-Riemannian metric. Examples are furnished by
the symmetric space of d-dimensional affine subspaces of Rn, if d , 0 and
(d,n) , (1, 3).

We define:

Definition 1 Assume that in the symmetric space X = G/K a vector v is attached
to the base point b, and w = g � v is attached to x = g ◦ b. If ṽ ∈ s represents v,
then Expx(w) = Expg◦b(g � v) := g exp(ṽ) ◦ b.

The choice of g such that g ◦ b = x is not unique, but it is well known
that Expx(w) does not depend on this choice.1 Note that Exp is an invari-
ant mapping which means that for any transformation g ∈ G, we have
Expg◦x(g � w) = g ◦ Expx(w).

Example 5 We want to compute Expx(w) in the space Posn = GLn/On. We
first find g ∈ GLn such that g ◦ b = x. This is done by letting g = x1/2, itself
contained in Posn. Solving for v such that g�v = w results in v = x−1/2wx−1/2,
which in s is represented by ṽ = 1

2 v. We evaluate Expx(w) = g exp(v) ◦ b =
g exp(ṽ)2g and observe that exp(aba−1) = a(exp b)a−1. This yields

Expx(w) = x1/2 exp(x−1/2wx−1/2)x1/2 = x exp(x−1w).

With the exponential mapping we can now define ⊕ and 	 by letting

x ⊕ w = Expx(w), y 	 x = Exp−1
x (y). (3)

While ⊕ is globally defined, this is generally not the case for 	 (but see the
remarks on well-definedness below). The following is well known [5]:

Lemma 2 The differential of the mapping v 7→ x⊕ v at v = 0 equals the identity.

Example 6 In Posn, 	 is globally defined, because Example 5 implies y 	 x
= x1/2 log(x−1/2 y x−1/2) x1/2, and log |Posn is well defined.

1 The following proof is similar to the proof in [5, p. 209f]: By construction, k ∈ K
implies that π(kgk−1) = π(kg) = k ◦ π(g), and so by a limit g(t) → e with dg/dt = v we
have dπ(Adk v) = k � dπ(v). If v ∈ s = TbX, we can even write Adk v = k � v. Now we
consider two group elements g, h ∈ G which transform the base point to the point x under
consideration and construct Expx(tw) in two ways: x = g ◦ b = h ◦ b =⇒ k := h−1 g ∈ K;
w = g�u = h�v for u, v ∈ s =⇒ v = k�u = Adk(u) =⇒ h◦Expb(tv) = π(h exp(t Adk u)) =
π(gk−1k exp(tu)) = g ◦ Expb(tu). Here we have used that exp(Adk v) = k(exp v)k−1.
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2.4 Weighted binary averages.

The binary average defined by

g-avα(x, y) = x ⊕ α(y 	 x) (4)

is analogous to the affine average (1−α)x+αy = x+α(y−x). In Riemannian
and in symmetric spaces, the curves t 7→ x⊕ (tv) are called geodesics. Thus
this average should be called the geodesic average, as it lies on a geodesic
which connects x, y. The relations g-avt(x, y) = g-av1−t(y, x), g-av1/2(x, y) =
g-av1/2(y, x) follow from well known properties of Exp (see [5]).

Example 7 In Posn, the geodesic average is expressed as g-avα(x, y) = x ·
exp(α log(x−1y)) = x · (x−1y)α.

2.5 Intrinsic means.

The weighted mean x∗ =
∑
α jx j of points x j ∈ Rd with weights α j summing

up to 1 is quite obviously characterized as a minimizer:

∇ fα(x∗) = 0 where fα(x) =
∑n

j=1
α j dist(x j, x)2. (5)

Further, if for a moment we adopt the notation x 	 y for the ordinary
difference x − y, x∗ is also uniqely characterized by the balance condition

x∗ = mean((x1, α1), . . . , (xn, αn)) ⇐⇒
∑n

j=1
α j(x j 	 x∗) = 0. (6)

Equations (5) and (6) have a meaning in Riemannian geometry, too. It is
known that x∗, if defined by either equation, exists uniquely if we restrict
ourselves to data which lie in small sets, and that then (5), (6) are equivalent
(see [6,7] for more details). Globally however, x∗ is in general not unique.

In any geometry where	 is defined, (6) makes sense, and we would like
to call any point x∗ defined by (6) the weighted intrinsic mean. Its computation
is usually possible only numerically. For two points (n = 2), the intrinsic
mean reduces to the previously defined binary average.

2.6 Well-definedness of geometric constructions

If a geometric construction of Euclidean space is extended to a more gen-
eral setting, it frequently turns out to be no longer globally defined. For
example, the geodesic midpoint in surfaces might not exist (for incomplete
surfaces), or might not exist uniquely (for example for antipodes on the
sphere). The same is true for the more general intrinsic mean construction.

For this reason, general statements on existence, convergence, etc. of
subdivision rules in nonlinear geometries can be true only for dense enough
input data (see for instance the discussion in the first paper on this subject,
namely [15]). In some geometries relevant to applications we can be more
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specific, and 	 may even be globally well defined. This is the case of the
space Posn, as seen from Example 6. The well-definedness of the intrinsic
mean is the subject of Section 4.

3 Defining subdivision in Riemannian and symmetric spaces

One way to transfer the definition of a linear subdivision rule S as given
by (1) to a more general setting is to rewrite it in the form

SpNi+k =
∑

j∈Z
ak+N(i− j)p j = mi,k +

∑
j∈Z

ak+N(i− j)(p j −mi,k), (7)

where mi,k are arbitrary except for Ni + k = Ni′ + k′ =⇒ mi,k = mi′,k′ . We
now replace every occurrence of + and − by the operators ⊕ and 	:

TpNi+k = mi,k ⊕
∑

j∈Z
ak+N(i− j)(p j 	mi,k) (k = 0, . . . ,N − 1). (8)

This rule (the log-exponential analogue of S) operates on sequences of input
data which live in a Lie group, in a symmetric space or in a Riemannian
manifold. It was essentially first considered by D. Donoho (see also [13]). As
to the choice of the points mi,k, we could let mi,k = pi or mi,k = g-av1/2(pi, pi+1).
Smoothness of such rules in Lie group rules is analyzed for instance by [4,
18].

Using the intrinsic mean, we can directly convert Equation (1) into an
invariant subdivision rule. We use one of the two equivalent definitions

Tpi = mean((p j, ai−N j) j∈Z), or TpNi+k = mean((p j, aNi+k−N j)). (9)

We call T the i-mean analogue of the linear rule S. Interestingly, (9) becomes
a special case of (8), if we choose mi,k = mean((p j, aNi+k−N j)), since then the
expression

∑
ak+N(i− j)(p j 	mi,k) in (8) equals 0.

Any convergent linear rule (which in generally accepted usage does
not include the trivially convergent ones with spectral radius less than
one) consists of affine combinations and can be expressed in terms of
binary affine averages [15]. Sometimes this expression is very symmetric
and thus a candidate for replacing affine averages by geodesic averages.
For instance, a geodesic analogue of the Lane-Riesenfeld rule of Equation (2)
reads

Tp2i = g-av 1
2

(
g-av 1

4
(pi, pi−1),g-av 1

4
(pi, pi+1)

)
, Tp2i+1 = g-av 1

2
(pi, pi+1).

4 Global convergence analysis

In general, convergence statements for nonlinear subdivision rules are only
possible for dense enough input data. Special geometries, however, allow
us to give more precise statements. We postpone the general case to the next
section and concentrate on Cartan-Hadamard (CH) manifolds, which are
defined by two conditions: (i) the sectional curvature is nonpositive and



8

(ii) simple connectedness. The space Posn, which from the viewpoint of
differential geometry is studied in chapter XII of [9], is our major exampe.
The intrinsic mean defined by (6) is unique in CH manifolds, as shown by
Th. 9.1 in Ch. 8 of [8].

Lemma 3 Consider a CH manifold M and points x1, . . . , xr ∈ M. Define the
intrinsic mean x∗ by nonnegative weights (α j)r

j=1 with
∑
α j = 1. Similarly x∗∗ is

defined by weights β j. Then the Riemannian distance of x∗, x∗∗ obeys

dist(x∗, x∗∗) ≤
∑

j

|σ j − τ j| ·max
1≤k≤r

dist(xk, xk+1), with σ j =
∑
i≤ j

αi, τ j =
∑
i≤ j

βi.

Proof We consider σ as a function σ : {1, . . . , r} → R and define σ−1(t) =
sup{ j | σ j < t}. By construction, σ−1 maps a subinterval of length α j of [0, 1]
to the index j, for all j ∈ {1, . . . , r}. Thus the function fα(x) of Equ. (5) equals

fα(x) =
∑

α j dist(x j, x)2 =

∫
[0,1]

dist(xσ−1(t), x)2 dt.

Analogously we convert fβ into an integral. This notation for fα and fβ is
the one of [6]. Theorem 1.5.1 and the proof of Cor. 1.6 of that paper show
that

dist(x∗, x∗∗) ≤
∫

[0,1]
‖ exp−1

x∗ (xσ−1(t)) − exp−1
x∗ (xτ−1(t))‖ dt.

The exponential mapping does not decrease distances in CH manifolds, so

dist(x∗, x∗∗) ≤
∫

[0,1]
dist(xσ−1(t), xτ−1(t)) dt ≤ sup j dist(x j, x j+1) ·

∫
[0,1]
|σ−1
− τ−1

|.

The latter integral obviously equals
∑
|σ j−τ j|, so the proof is complete. ut

Proposition 4 Suppose that T is the i-mean analogue in a CH manifold of the
linear rule S with dilation factor N and nonnegative mask coefficients a j. Let

σ(r)
j =
∑

i≤ j
ar−Ni, µ = max0≤r≤N

∑
j
|σ(r+1)

j − σ(r)
j |. (10)

If µ < 1, then T converges to a continuous limit T∞p for all input data p.

Proof Each point Tkp j is the intrinsic mean of points Tk−1pi with weights
a j−Ni. As only finitely many coefficients of the mask are nonzero, it therefore
lies in the geodesic convex hull Ci,k of a fixed number of data points Tk−1pi.
By Lemma 3,

dist(Tkpi+1,Tkpi) ≤ µk sup j dist(p j, p j+1).

It follows that the diameter of Ci,k is contracting withµk. We now interpolate
the vertices Tkpi by a broken geodesic c(k) : R → M, where c(k)

|[i/Nk,(i+1)/Nk]

is the geodesic spanned by Tkpi and Tkpi+1. Contraction of Ci,k implies that
for any interval I = [a, b], (c(k)

∣∣∣
I)k≥0 is a Cauchy sequence in C(I,M), when

equipped with the metric dist(c, d) = maxt∈I(dist(c(t), d(t)). This metric is
complete, so T∞p exists. ut
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Theorem 5 Let T be the i-mean analogue in a CH manifold of the linear rule S
with dilation factor N. If the derived scheme S∗ obeys ‖S∗‖ < N, then T converges
to a continuous limit T∞p for all input data p.

Proof Consider special input data q : Z → R with q j = −1 for j ≤ 0 and
q j = 0 otherwise. Denote the mask of the derived scheme by (a∗j) j∈Z. Then

1
N

a∗l =
1
N

S∗∆ql = ∆Sql = Sql+1 − Sql =
∑

k≤0
(−al+1−Nk + al−Nk)

=⇒
1
N

a∗r−N j =
∑

k≤0
(ar−N( j+k) − ar+1−N( j+k)) =

∑
i≤ j

(ar−Ni − ar+1−Ni).

In the terminology of Prop. 4, we have shown that 1
N a∗r−N j = σ

(r)
j − σ

(r+1)
j .

Thus

supr

∑
j
|σ(r)

j − σ
(r+1)
j | =

1
N

supr

∑
j
|a∗r−N j| =

1
N
‖S∗‖.

We can thus directly apply Prop. 4, and the proof is complete. ut

The condition that ‖S∗‖ < N is rather weak. It is one of the easily checked
sufficient conditions which ensure convergence of a linear scheme. It is very
satisfactory that it occurs as a sufficient condition also in the nonlinear case.

Example 8 The i-mean analogue of all binary Lane-Riesenfeld subdivision
schemes, starting with the piecewise linear one, converge for arbitrary
input data in Posn, since we have ‖S∗‖ = 1 throughout.

5 C1 smoothness analysis

In our analysis of subdivision rules in general Riemannian manifolds and
symmetric spaces we invoke the general results presented in [15,14] and
which give convergence only for dense enough input data. For both rules
S, T, computing the i-th new data point is a function of ν of old data
points, ν being globally bounded by the distribution of nonzero coefficients
in the mask (ai) of S. These two facts mean that the following theorems
and their proofs are entirely local. Thus, we employ a local coordinate
chart χ : X → Rn for the manifold X under consideration and denote the
coordinate representations of ⊕,T, . . . by ⊕̃, T̃, . . . , respectively. Another
consequence of ν being bounded is that T̃ has Taylor polynomials in the
ordinary sense. The results is as follos:

Theorem 6 Assume that the rule S with dilation factor N is defined by (1), and
that T is its geodesic analogue or log-exp analogue (in which case assume that the
auxiliary points mi,k are chosen such that mi,k → pi as input data approach each
other). If S is a convergent scheme, then T is convergent for dense enough input
data. If in addition the derived scheme S∗ is a convergent scheme (so S has C1

limits), then also the limits of the nonlinear rule T enjoy C1 smoothness.
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Note that Theorem 6 applies to the i-mean analogue of a linear rule,
because it can be seen as a special case of the log-exp construction.

Proof Below we establish that the proximity inequality ‖T̃x − Sx‖∞ ≤ const ·
‖∆x‖∞ holds for dense enough input data. By [14, Lemma 3] this remains
true if S,T are replaced by iterates Sk,Tk, respectively. Convergence to a
continuous limit now follows from [15, Th. 3] applied to some iterate Sk,
Tk such that ‖S∗k/Nk

‖ < 1. Likewise, C1 smoothness follows from [15, Th. 5]
applied to Sk, Tk such that ‖S∗k/Nk

‖ < 1/Nk/2. Such k exists by [1, Lemma 1].
As to the proximity inequality, Lemma 2 implies the Taylor lineariza-

tions x ⊕̃ v =̇ x + v as v→ 0 and y 	̃ x =̇ y − x as y→ x. We now aim at the
first order Taylor polynomial of T̃(p), as input data pi approach a constant
sequence. As mi,k tends to that same sequence, the vectors p j	mi,k in (8) ap-
proach zero. It is therefore clear that the Taylor polynomial equals the linear
rule S. It follows that T̃xi = Sxi+O(‖xi−x j‖

2), i.e., ‖T̃xi−Sxi‖ ≤ C ·sup ‖∆xi‖
2.

Note that the previous arguments includes the i-mean analogue. A
similar argument is true if T is an analogue of S constructed from bi-
nary averages: The linearization g̃-avt(x, y) =̇ (1 − t)x + ty for y → x im-
plies ‖g̃-avt(x, y) − (1 − t)x − ty‖ ≤ C′‖x − y‖2. By iteration, ‖T̃xi − Sxi‖ ≤

C′′ sup ‖∆xi‖
2. ut

6 C2 smoothness analysis

We give conditions which ensure that the limit curves of subdivision rules
in Riemannian and symmetric spaces enjoy C2 smoothness, provided they
exist. The proofs given here are similar to others which deal with Lie group
data (cf. [4]). The recent manuscript [17] which shows general Ck smothness
of a wide class of schemes does not cover the more general statement of
our Theorem 7 (see Remark 2 below). In our method of proof, we follow
[4]. The general result is as follows:

Theorem 7 Consider the linear subdivision rule S and its log-exponential ana-
logue T defined by (8), including the i-mean analogue (9) as a special case. If S,
S∗, and S∗∗ are convergent schemes, then T’s limits enjoy C2 smoothness whenever
they exist.

Before we proceed with the proof we give some auxiliary results.

Lemma 8 The composite operation (x ⊕̃ v ⊕̃ w) 	̃ x has the second order Taylor
polynomial v + w +Ψx(v,w) with bilinear Ψx, as v,w→ 0.

Proof By Lemma 2, (x ⊕̃ v ⊕̃ w) 	̃ x =̇ v + w and therefore (x ⊕̃ v ⊕̃ w) 	̃ x =̈
v + w + ψx(v,w), where ψx : R2m

→ Rm is homogeneous quadratic, having
the general form

ψx(v,w) = ω1x(v, v) + ω2x(w,w) +Ψx(v,w)

with bilinear ω1x, ω2x, and Ψx. Now (x ⊕̃ v ⊕̃ 0) 	̃ x = (x ⊕̃ v) 	̃ x = v and
(x ⊕̃ 0 ⊕̃ w) 	̃ x = (x ⊕̃ w) 	̃ x = w imply ω1x(v, v) = 0, ω2x(w,w) = 0. ut
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In the Lie group case, the expansion given of Lemma 8 reads log(exp v ·
exp w) =̈ v+w+ 1

2 [v,w]. This similarity allows us to follow closely the proof
of C2 smoothness in [4]. The following lemma has been shown in more
generality by [3]:

Lemma 9 Assume that β : V × V → V is bilinear, and F : VZ → V takes
sequences as arguments, mapping them to

∑
Ar,sβ(vr, vs), with only finitely many

matrices Ar,s being nonzero. Then F can be rewritten in the form

F(v j) =
∑

r,s∈Z
(ar,sβ(vr, ∆

2vs) + br,sβ(∆2vr, vs),

if and only if the generating Laurent polynomial A(ξ, η) :=
∑

r,s∈ZArsξrηs has the
properties

A(1, 1) =
∂A
∂ξ

(1, 1) =
∂A
∂η

(1, 1) =
∂2A
∂ξ∂η

(1, 1) = 0.

Proof (of Theorem 7) As before, we use a tilde to indicate coordinate repre-
sentations and let subdivision rules S and T̃ act on data xi living in Rn. We
introduce vl

i,k = xl 	̃ m̃i,k, where m̃i,k is the coordinate representation of the

point mi,k of (8) (itself data dependent). With (T̃ − S)xNi+k = Fi,k we have

Fi,k := m̃i,k ⊕̃
∑

j
aNi−k−N jv

j
i,k − m̃i,k −

∑
j
aNi+k−N j(m̃i,k ⊕̃ v j

i,k − m̃i,k).

Obviously, Fi,k =̇ 0, as as v j
i → 0. Aiming at a 2nd order Taylor polynomial

of ∆(T − S)xNi+k, we introduce x ⊕̃ v =̈ x + v + φx(v, v), (with φx bilinear and
symmetric). If neither m̃i,k =: m̃i nor v j

i,k =: v j
i depend on k, then

∆(T̃ − S)xNi+k = Fi,k+1 − Fi,k =̈ φm̃i
(
∑

j
aNi+k+1−N jv

j
i ,
′′ )

− φm̃i
(
∑

j
aNi+k−N jv

j
i ,
′′ ) −

∑
j
∆aNi+k−N jφm̃i

(v j
i , v

j
i ). (11)

This computation is valid only for k ∈ {0, . . . ,N− 1}. The following compu-
tation, with deals with the general case m̃i,k , m̃i,k+1, also includes the case
k = N − 1, by letting m̃i+1,0 = m̃i,N.

Let wi,k = m̃i,k+1 	 m̃i and use Lemma 8 to compute

x j = m̃i,k ⊕̃ v j
i,k = m̃i,k+1 ⊕̃ v j

i,k+1 = m̃i,k ⊕̃ wi,k ⊕̃ v j
i,k+1

=̈ m̃i,k ⊕̃ (wi,k + v j
i,k+1 +Ψm̃i,k

(wi,k, v
j
i,k+1))

=⇒ v j
i,k =̈ wi,k + v j

i,k+1 +Ψm̃i,k
(wi,k, v

j
i,k+1).

Letting ui,k =
∑

aN(i+1)−N jv
j
i,k+1, this formula implies

ui,k =̈
∑

j
aN(i+1)−N j(v

j
i,k − wi,k −Ψm̃i,k

(wi,k, v
j
i,k+1))

=̈
∑

j
aN(i+1)−N jv

j
i,k − wi,k −Ψm̃i,k

(wi,k,
∑

j
aN(i+1)−N jv

j
i,k+1).
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Note that the last term equals Ψm̃i,k
(wi,k,ui,k). We continue with

TxNi+k+1 = m̃i,k ⊕̃ wi,k ⊕̃ ui,k =̈ m̃i,k ⊕̃ (wi,k + ui,k +Ψm̃i,k
(wi,k,ui,k))

=̈ m̃i,k + wi,k + ui,k +Ψm̃i,k
(wi,k,ui,k) + φm̃i,k

(wi,k + ui,k,
′′)

=̈ m̃i,k +
∑

j
aN(i+1)−N jv

j
i,k + φm̃i,k

(wi,k + ui,k,
′′)

=̈ m̃i,k +
∑

j
aN(i+1)−N jv

j
i,k + φm̃i,k

(
∑

j
aN(i+1)−N jv

j
i,k,
′′).

The wi’s have disappeared and the result is the same as if m̃i,k+1 = m̃i,k —
we get (11) again. In the following therefore without loss of generality we
let mi,k = mi and v j

i, j = v j
i .

Index shifts are irrelevant for the result, so we let i = 0 in what follows.
Expanding (11), using symmetry and bilinearity of φm̃i

, yields

F0,k+1 − F0,k =̈
∑

r,s
Ar,sφm̃0

(vr
0, v

s
0), where

Ars = ar+1−Nsar+1−Nr − ar−Nsar−Nr for s , r,

Ars = a2
r+1−Ns − a2

r−Ns + (ar+1−Ns − ar−Ns) for s = r.

This is analogous to [4, Equ. (13)], where it is also shown that the Ar,s’s
fulfill the conditions of Lemma 9. We conclude that

F0,k+1 − F0,k =̈
∑

r,s

(
ar,sφm̃0

(vr
0, ∆

2vs
0) + br,sφm̃i

(∆2vr
i , v

s
i )
)
.

The inequality ‖φ(v,w)‖ ≤ ‖φ‖ · ‖v‖ · ‖w‖ for any bilinear function and the
cubic remainder term in the Taylor series now implies the existence of a con-
stant C such that locally ‖Fi,k+1−Fi,k‖ is bounded by C · sup ‖vr

i ‖ sup ‖∆2vr
i ‖+

O(3). The first order expansion x ⊕̃ y =̇ x + y shows that vr
i =̇ xr

− m̃i =

(xi−m̃i)+ (xi+1−xi)+ · · ·+ (xr−xr−1), so ‖vr
i ‖ ≤ C ·sup j ‖∆x j‖+O(2). The same

argument shows that ∆2vr
i =̇∆

2xr
i , so ‖∆2vr

i ‖ ≤ sup j ‖∆
2x j‖+O(2). Summing

up, we have the inequality

‖∆(S − T̃)x‖ = supi∈Z,0≤k≤N ‖Fi,k+1 − Fi,k‖ ≤ C(‖∆x‖3 + ‖∆2x‖ ‖∆x‖),

as v j
i → 0. This is the general proximity condition of [14, Def. 4] which

allows us to invoke [14, Theorem 6]. The required conditions that ‖S∗‖ <
N1/3 and ‖S∗‖ · ‖S∗∗‖ < N for S or one of its iterates are fulfilled by [1, Lemma
1]. We conclude that limit curves of T enjoy C2 smoothness. ut

Remark 2 The recent paper [17] shows Ck smoothness for a general class of
manifold subdivision rules with dilation factor N = 2, where the auxiliary
points mi,k of (8) are themselves chosen by an interpolatory subdivision
rule. It seems obvious from numerical experiments that an arbitrary choice
of auxiliary points mi,k destroys any smoothness higher than C2 [17].
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7 Examples

The space Posn of positive definite symmetric n × n matrices, already dis-
cussed in Examples 1–7, is of interest in vision and data processing, because
Posn-valued data naturally occur for example in diffusion tensor imaging.
Their ‘geometric’ (i.e., invariant) handling is the topic of several contribu-
tions, for instance [10]. It has various different interpretations, all of which
lead to an exponential mapping. We shall see, however, that in fact all
these different notions coincide, and that for showing properties of sub-
division in Posn, we can apply Lie group results as well as results for
Cartan-Hadamard manifolds.

7.1 Subdivision in Posn as a symmetric space.

It is shown in [9, Ch. XII] that Posn can be equipped with a Riemannian
metric such that it becomes a Cartan-Hadamard manifold whose exponen-
tial mapping coincides with the one defined in Posn as a symmetric space
by Example 5. We therefore have the following corollary of Theorem 5:

Corollary 10 Let T be the i-mean analogue in Posn of the linear rule S with
dilation factor N. If the derived scheme S∗ obeys ‖S∗‖ < N, then T converges to a
continuous limit T∞p for all input data p.

In all cases where Theorem 5 applies we can remove the assumption that
the limit T∞p exists from the statements of Theorems 6 and 7. The modified
statements are formulated in the corollaries below, which in particular
apply to Posn.

Corollary 11 If S has positive mask and T is the i-mean analogue of S in a CH
manifold, then all input data p generate limit curves T∞p of C1, provided ‖S∗‖ < N
and S∗ is a convergent scheme.

Proof Recall that Theorem 6 applies to the i-mean analogue of a linear rule,
because it can be seen as a special case of the log-exp construction, and use
that that ‖S∗‖ < N implies that S is a convergent scheme. ut

Corollary 12 If S has positive mask and T is the i-mean analogue of S in a CH
manifold, then limit curves T∞p enjoy C2 smoothness for all input data, provided
‖S∗‖ < N, and both S∗, S∗∗ are convergent schemes.

7.2 Different ways of subdivision in matrix groups.

Before we return to Posn, we dicuss a minor point which arises from the fact
that the construction of symmetric spaces G/H, if H is taken as the trivial
group H = {e}, leads back to G itself. It follows that now two different kinds
of log/exp subdivision rules can be defined in the group G: one construction
with applies to groups, and another one which applies to symmetric spaces.
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The symmetric space construction with G = G/{e} leads to (using the
terminology of Section 2) s = id, s = g, and k = 0. This yields the functions
p ⊕ v = p exp(p−1v) and q 	 p = p log(p−1q).

On the other hand, log-exponential subdivision for Lie groups has
already been studied (see [4]), using the operators p ⊕̂ v = p exp v and
q 	̂ p = log(p−1q).

However, it is obvious that pi⊕
∑

j α j(p j	pi) = pi⊕̂
∑

j α j(p j	̂pi), so the log-
exponential analogues of subdivision rules constructed with either method
are the same. We may therefore speak of the log-exponential analogue of a
linear rule S in a group G.

7.3 Subdivision in Posn as subset of a matrix group.

As Posn is a subset of the matrix group GLn it is interesting to compare
subdivision rules defined in GLn with subdivision rules of Posn. By coin-
cidence, the operator ⊕ in Posn reads p ⊕ w = p exp(p−1w) (by Example 5),
which is the same as the ⊕ operator in the symmetric space GLn/{e}. This
fact is stated as follows:

Proposition 13 Assume that T and T′ are the log-exp analogues of a linear
subdivision rule S in the space Posn and in the group GLn, respectively. Then
T = T′|Posn . This is also true for geodesic analogues.

This result is important because it allows us to transfer known proper-
ties of Lie group subdivision schemes to Posn. We give only one example
in the form of a corollary of a theorem of [18]:

Corollary 14 If the linear subdivision rule S of Equation (7) is interpolatory with
dilation factor 2 and has Hölder smoothness γ, then its log/exp analogue in Posn
defined by Tp2i = pi and Tp2i+1 = pi⊕

∑
j∈Z a1+2(i− j)(p j	pi) has the same property.

7.4 Subdivision with linear subspaces.

Here we briefly describe how the Grassmann manifold Gd,n of d-dimen-
sional linear subspaces of Rn is made a symmetric space and how to find
geodesics. The special orthogonal group SOn is acting on X = Gd,n, and we
choose as base point the subspace L spanned by the first d canonical basis
vectors. We use block matrix notation and write n × n skew-symmetric
matrices v ∈ son in the form

( U P
−PT W

)
, where U ∈ sod and W ∈ son−d. The (in-

finitesimal) rotations which leave the base point invariant are exactly those
which transform both L and L⊥ within themselves, so k is characterized by
P = 0, and the subgroup K is the direct product of rotations within L and
rotations within L⊥. We can therefore write Gd,n = SOn/SOd × SOn−d.

The reflection s defined by
( U P
−PT W

) s
7−→
( U −P

PT W
)
, makes Gd,n a symmetric

space (infinitesimal version) with +1 eigenspace k and −1 eigenspace s =
{
( 0 P
−PT 0
)
}. We observe that with the reflection ρL in the subspace L we have
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s(x) = ρLxρL. It follows that the involutive automorphism σ(x) = ρL ◦ x ◦ ρL
of the group SOn, whose fixed point set is K, has differential s. Consequently
Gd,n is a symmetric space also in the narrower sense.

For a description of geodesics in Gd,n, it is sufficient to consider geodesics
emanating from L. Consider the following special infinitesimal rotation

v =


0m

0d−m diag(α1, . . . , αd−m)
−diag(α1, . . . , αd−m) 0d−m

0n−2d+m

 ∈ s. Then

exp(tv) =


Em

diag(cos(tα j)) diag(sin(tα j))

−diag(sin(tα j)) diag(cos(tα j))
En−2d+m

 ∈ SOn,

and exp(tv)(L) is a geodesic. The geometric meaning of this is that L un-
dergoes d − m independent rotations in mutually orthogonal planes until
it reaches some space L′ = exp(t0v)(L). These planes are spanned by ON
bases {em+ j, ed+ j} for j = 1, . . . , d −m. Vectors e1, . . . , em span the intersection
L ∩ L′, and the remaining n − 2d + m basis vectors span the orthogonal
complement (L + L′)⊥ of the spaces of interest. If, for a given subspace L′,
we can find a change of coordinates such that e1, . . . , ed still span L and L′ is
spanned by the first d columns of the matrix v above, then t 7→ exp(tv)(L) is
a geodesic connecting L with L′. Representing tangent vectors by elements
of swe then have L ⊕ v = L′ and L′ 	 L = v.

It is well known how to find these planes and basis vectors: With the or-
thogonal projections p, p′ onto L, L′, consider the mapping p◦p′|L. Obviously
L∩L′ is an eigenspace for the eigenvalue 1, and we assume it to be spanned
by e1, . . . , em. Each of the remaining eigenvalues cos2 α j ( j = 1, . . . , d − m)
corresponds to an eigenvector em+ j of p ◦ p′ in L.

— In case of cosα j , 0, Gram-Schmidt orthonormalization applied
to em+ j, p′(em+ j) yields the basis {em+ j, ed+ j} of the corresponding plane of
rotation. The angle α j is uniquely determined by the requirement 0 < α j <
π
2 , and it is not difficult to see that even with multiple eigenvalues, v does
not depend on the choice of eigenvector.

— Zero eigenvalues cosα j occur if part of L is orthogonal to L′ (and vice
versa). In this case we choose an appropriate number of basis vectors em+ j
in the null space L ∩ (L′)⊥, and corresponding basis vectors ed+ j in L′ ∩ L⊥.
It is no longer possible to choose v in a both invariant and unique way.

7.5 Subdivision with affine subspaces.

The set G aff
d,n of d-dimensional affine subspaces of Rn is acted upon by

the Euclidean motion group SEn. If d , 0 it does not carry an invariant
Riemannian metric, and except for the line space G aff

1,3 not even an indefinite
one. The latter’s geodesics have been used for instance for the design of
freeform ruled surfaces [12].
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We demonstrate why X = G aff
d,n is a symmetric space: The group G = SEn

is a matrix group, consisting of elements g =
(1 0

a A
)
, where a ∈ Rn, and

A ∈ SOn. It acts on a point ofRn via g◦x = Ax+ a, and g◦ (h◦x) = (g ·h)◦x.
The Lie algebra of SEn is called sen: It consists of

(0 0
v V
)

where v ∈ Rn, V ∈ son
(son being the n × n skew-symmetric matrices).

We choose as a base point in X the d-dim. subspace L which contains
0 and is spanned by the first d canonical basis vectors. Its stabilizer K
is generated by translations along K and rotations which leave L (and
L⊥) invariant. The Lie algebra k consequently is spanned by infinitesimal
translations along L, and infinitesimal rotations within L and L⊥, which
means that v ∈ L and V in block matrix notation reads V =

( U P
−PT W

)
, with

P = 0, U ∈ sod, W ∈ son−d. Define the reflection s and the subspace s by 0 0 0
u U P
w −PT W

 s
7−→

 0 0 0
u U −P
−w PT W

 =⇒ s =


 0 0 0

0 0 P
w −PT 0


 .

Like in the previous section, we consider the reflection ρL in the base
subspace. It is easy to see that s is the differential of the involution σ(x) =
ρL ◦ x ◦ ρL which is defined in the group SEn. Therefore, G aff

d,n = SEn/K is
indeed a symmetric space, both in the infinitesimal and the narrower sense.

For the special case G aff
1,3 we describe how to determine the geodesic

which connects lines L1,L2, i.e., how to find v such that L1 ⊕ v = L2. The
geodesic we look for is the curve c(t) = L1⊕ (tv). By invariance with respect
to Euclidean motions we way use a Cartesian coordinate system such that
L1 is the x axis, the z axis is the common orthogonal transversal of L1,L2,
and L2 contains the point (0, 0, a) and is parallel to (cosφ, sinφ, 0). Now L1

is the base point, so we only must find
(0 0

v V
)
∈ s such that exp(

(0 0
v V
)
)◦L1 = L2.

The following choice apparently works:

exp
(
t ·


0 0 0 0
0 0 −φ 0
0 φ 0 0
a 0 0 0


)
=


1 0 0 0
0 cos(tφ) − sin(tφ) 0
0 sin(tφ) cos(tφ) 0
a 0 0 1

 .
This yields the result that in line space, the geodesic which connects two
given lines corresponds to a helical motion whose axis is the common
transversal of the given lines. For general values of d,n the construction is
similar and leads to a combination of translations and rotations in mutually
orthogonal planes like in Section 7.4. For d = 0, the geodesics are the straight
lines of Rn, and for d = n − 1 (hyperplanes) the geodesic connecting L1,L2
corresponds to a rotation about the axis L1 ∩ L2.

8 Concluding remarks

In recent years, quite a number of results concerning the convergence and
smoothness of subdivision rules which apply to dense enough data have
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been obtained by the method of proximity (where [15] is a prototype). In
contrast to this, convergence for all input data has not been explored to a
great extent so far. In fact a more detailed analysis in the spirit of Theorem
5 as well as the obvious extensions to the multivariate case are the topic of
a forthcoming paper.
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